

1

Status of CTF3

G.Geschonke CERN

Plan for 2005

Install and commission:

In addition: add 2 accelerating structures in front of PETS add collimator in PETS line CLEX building

Sub - harmonic bunching system

one of three buncher cavities

- Three Sub-harmonic bunching cavities built and installed
- RF power source:
 4 Travelling Wave Tubes purchased
 1 failed (guarantee)
 - 1 broke in transport
 - HV supply: Manufacturer late delivery foreseen in August, still not received the first one hope to receive one before end of 2005

phase coding cold not be done. everything else (low level RF) ready.

CTF3 collaboration meeting 2005 G.Geschonke Status

Install missing accelerating structures

 Accelerating Structures installed according to plan. Total installed now:

- 2 in injector
- 14 in Drive Beam Linac

2 not installed, klystron used for RF deflector experiment

☺ Move 2 accelerating structures before PETS tank → higher energy
☺ Change 3 GHz RF power distribution: All accelerating structures for 30 GHz power production can be powered with 50 Hz rep rate.

Delay Loop

One of the highlights of this year

Full responsibility of INFN Frascati

 \rightarrow talk by Andrea Ghigo

Delay Loop

overall responsibility: INFN

INFN

optics vacuum system beam diagnostics sextupoles wiggler corrector magnets 1.5 GHz RF deflector waveguides installation

CERN

dipoles, quadrupoles, correctors septa power converters controls vacuum control, pumps 1.5 GHz klystron/modulator, low level RF beam diagnostics (part) alignment infrastructure, cabling, installation support

Installation basically complete, a few beam position monitors missing First Beam circulated on 24.11.

(without RF deflector so far)

30 GHz test area

30 GHz power production now operational for the CLIC accelerating structure programme.

More than 90 MW produced from "PETS"

very promising results
→ Walter Wünsch / Alberto Rodriguez

CLEX building

Very tentative layout for CLEX floor space

8 m wide, 40 m long partly covered by klystron gallery

Status: Building layout defined Design advancing, construction during 2006

 \rightarrow Hans Braun

Photo Injector

In parallel: Development of Photo injector Plan to install instead of Thermionic injector in 2007. Financed largely by EU (PHIN) Laser: RAL RF gun: LAL Photocathodes: CERN

Developments going on, tests scheduled to start mid 2006

add 2 accelerating structures in front of PETS add collimator in PETS line

Operation

Very little time this year for operation: 13 weeks Split between machine studies and 30 GHz operation

- Consolidation of operation many sources of jitter / instabilities removed
- Achieved stable operation for 30 GHz conditioning

Major results: Beam into Delay Loop very promising 30 GHz conditioning

Lessons:

- Installation takes longer than foreseen
- Installation in summer cannot be avoided
- separate areas such that 30 GHz work can continue during installation

CTF3 programme

Collaborations

- Finnish Industry: One person for CLIC/CTF3
- INFN: Bunch lengthening/compression Chicane, Complete responsibility for Delay Loop, Optics for Combiner Ring, Operations support, RF deflectors 3 GHz
- LAL: e-Gun for preliminary phase Gun electronics and HV, pre-bunchers
- Northwestern University Illinois: Drive Beam accelerator acc. structure, Beam loss monitoring
- RAL: Laser development
- SLAC: RF gun, Injector design and commissioning
- University Lausanne: PhD student
- Uppsala University: Operations support, Phase monitor
- Many CERN groups

Photo injector (partly funded by EU)

- LAL: RF gun
- RAL: Laser
- CERN: Photocathodes

Collaborations for Accelerated Programme

Two meetings at CERN:

- 19. May 2004 : present work packages 18 delegations from CERN and 11 countries
- 28. January 2005 expressions of interest

- Memorandum of Understanding drafted organisation like experiment
- Addendum of MoU signed so far by 8 partners,
- Draft proposal by 4 institutes.
- Discussions with 4 institutes
- First meeting of CTF3 Coordination Committee on **30. November 2005** with signature of MoU.

Collaboration status

		spent up to end 2004		pledged for 2005-2009	
		manpower my	cost kSFr	manpower my	cost kSFr
Addendum signed					
Helsinki Institute of	specialist in micro machining technologies for CLIC structure				
Physics (HIP)	developments			3	
	industrial and academic partners				
Budker institute of	11 quadrupoles, 26 sextupoles				270
Nuclear Physics (BINP)	future: more magnets as required according to the same conditions.				
Northwestern	one accelerating structure		100		
University Illinois	beam loss monitor		100		50
	total manpower	2		1	
	RF pick-up for bunch length				100
CERN	existing facilities		40'000		
	new equipment		16'000		
	total manpower	100			
	power converters				860
	waveguides				100
	CLEX				2'500
	technical services				2'500
	project management				
	TL1 and CR				600
	magnets for CR				330
	vacuum equipment for CR				200
	installation TL1 and CR				1'600
	Controls CR				100
	CTF3 commissioning, testing				
	accelerating and PETS development				4'000
	total manpower			125	
Ankara University	manpower for CTF3 operation	0.25		5.00	
IAP	30 GHz power source				1'024
	Manpower and material, ISTC 227k\$ included				
SLAC	electron gun triode (long term loan)		320		
	injector design and commissioning	3			
JINR Dubna	Manpower for automatic conditioning		114		15

Collaboration status

Draft addendum					
France	electron guns and pre-bunchers (LAL)	13	100		
	BPM electronics IN2P3 LAPP			2	150
	Probe Beam Linac CEA			30	1'950
	Probe Beam photo injector IN2P3 LAL			2	248
CERN	Probe beam linac				2'000
	30 GHz power source(ISTC contribution)				75
INFN	Delay Loop	25	4'000		
	vacuum chamber TL1 and CR			4	900
Spain	15 qadrupoles for TBL + precision tables				
	2 Septa for CR				
	Extraction kicker for CR				
	HV pulser for kicker				
	32 corrector magnets for CR				
	PETS design				
	Contribution to BPM design for TBL			4	2'000

Under discussion

- India TL2 design, Alu vac chambers for TL2
- Sweden Two Beam test stand
 - UK Beam Instrumentation line, Studies
 - RAL Laser for photo injector

Next steps: 2006

If the expected contributions will be provided, the Combiner Ring will be built to schedule

Construction during 2006 installation of equipment from 2007 - 2009

Project status CLEX

TBL

Design: CERN, ???? Benchmarking experiments : CERN, ???? Magnets CIEMAT, ???? Power supplies CERN ??? Beam diagnostics Spain ???? vacuum system ????

Building: CERN

Instrumentation Test Beam (not presently in base-line project) Great Britain ? *30 GHz Test stand:* Uppsala University ? CERN

Probe Beam Dapnia / LAPP / LAL CERN ?

Missing about 25 man-years for continuous operation

Conclusion

- Programme basically on schedule: Installation on time Commissioning of existing hardware still to be finished
- Combiner Ring and TL1 assured, provided that expected (drafted) MoUs become reality
- TL2 not yet fully assured
- CLEX : some collaborations, some still missing
- Operations team required

Very ambitious programme, but completion within time scale possible with more collaborations

> Highly motivated team, excellent collaboration between all partners