

The Photoinjectors for CTF3

R. LOSITO - CERN CTF3 Collaboration Meeting 30/11/2005

PROBE Beam

Conclusions

R. Losito, The PHIN Photoinjector for CTF3

Photoinjector Funded jointly by :

• We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395).

R. Losito, *The PHIN Photoinjector for CTF3*

Pulse train duration	1.548	μs
Pulse train charge	5434	nC
Average current in the pulse train	3.51	A
Number of bunches in the sub-pulse	212	
Odd/even sub-pulse width (FWHH)	140.735	ns
Number of bunches in the pulse train	2332	
Charge / bunch	2.33	nC
Distance between bunches	0.667	ns
Bunch width (FWHH)	10	ps
ϵ_{T} normalized (rms)	<u>≺</u> 25	π .mm.mrad
$\Delta p/p (rms)$	<u><</u> 2	%
charge stability	<u>≺</u> 0.25	%
Repetition rate	1 - 50	Hz
Mean current @ 50 Hz	271.68	mA

• OPTIONS:

Single bunch

• 3 GHz, 5 Amps

R. Losito, The PHIN Photoinjector for CTF3

R. Losito, The PHIN Photoinjector for CTF3

R. Losito, The PHIN Photoinjector for CTF3

LASER (see G. Hirst Talk)

R. Losito, The PHIN Photoinjector for CTF3

RF Gun (see R. Roux's talk)

R. Losito, The PHIN Photoinjector for CTF3

- CERN photocathode Lab was working without interruption since 15 years.
- The whole line (preparation chamber, DC Gun, transport carrier) has been inspected and repaired.
- We started again few days ago with the first calibration coatings.
- We will start very soon with production of CsTe₂ by co-evaporation

R. Losito, *The PHIN Photoinjector for CTF3*

20 cath.	QE(%)
Min	8.2
Average	14.9
Max	22.5

Difficult thickness measurements and poor reproducibility

R. Losito, The PHIN Photoinjector for CTF3

- Improvement of Cs-Te cathode production (standard cathodes for CTF3)
- Co-evaporation : thickness calibration -> evaporation
 rate control -> stoichïometric ratio control
 - New evaporators : CEA's oven
 - New control system: VME based
 - Improved vacuum pressure measurement and new rest gas analysis
 - New transfer arm for XPS analysis

But photocathodes produced by co-evaporation seem to be more sensitive to the vacuum quality

R. Losito, *The PHIN Photoinjector for CTF3*

Rest gas analysis by mass spectrum analyzer: spectrum of CH₄

R. Losito, *The PHIN Photoinjector for CTF3*

- R&D on photocathodes:
 - Our wish: Photocathodes working in the second harmonic of Nd doped crystals (green light)
 - Visible to UV conversion efficiency : $\sim 20 25 \%$
 - Minimum QE (a) $UV \ge 3$ % during at least 40 working hours
 - ♦ → Minimum QE @ green light ≥ 0.6 % during at least 40 working hours
 - Alkali-antimonide photocathodes produced by co-evaporation in collaboration inside PHIN + CEA Bruyère-le-Châtel

- R&D on photocathodes:
- Secondary Emission Enhanced photo-emitter (SEE) in collaboration with CEA Bruyère-le-Châtel :
 - Idea from Brookhaven
 - photocathode plug exchange under UHV
 - Vacuum separation by transparent window
 - Secondary emission enhancement

R. Losito, The PHIN Photoinjector for CTF3

Putting All Together

R. Losito, *The PHIN Photoinjector for CTF3*

"Light" version

- Reduced frequency in the burst : 1.5 GHz
- Reduced charge per micropulse ~ 0.2 nC

$\mathbf{\mathbf{V}}$

- Re-use of the preparation chamber attached to the former CTF2 Probe beam RF gun. → Not TC nor MPC
- Substantial simplification and economy in the laser system.

Timing Drive - Probe beam

35 A - 140 ns - 150 MeV

R. Losito, The PHIN Photoinjector for CTF3

Putting All Together

R. Losito, The PHIN Photoinjector for CTF3

CONCLUSIONS

DRIVE Beam

- Design Phase is concluded, both for the Gun and the Laser
- A solution for photocathodes already exists, we will try to improve the reproducibility
- The Laser is expected at CERN by May 2006
- The RF Gun is expected by August 2006
- PROBE Beam
 - Specifications defined, re-use of drive beam Laser and CTF2 preparation Chamber
 - To be realised within CTF3 extended collaboration