

Alban Mosnier - CTF3 collaboration meeting November 2005

- GOAL : to mimic the main beam in order to measure precisely the
- performances of the CLIC 30 GHz structures
 - Installation in 2007 and Commissioning in 2008

Parameters		Motivation				
Energy	~ 200 MeV	Avoid beam disruption in high RF fields				
norm. rms Emittance	< 20 π mm mrad	Fit in 30 GHz structure acceptance				
Energy spread	< ± 2%	Measurement resolution				
Bunch charge	0.5 nC	CLIC parametera				
Bunch spacing	0.333 ns					
Number of bunches	1 – 64	Measure 30 GHz structure transients				
rms bunchlength	< 0.75 ps	Acceleration with 30 GHz				

multibunch operation : high beam current

 $Q_{b}=0.5 \text{ nC} \text{ and } F_{b}=3 \text{GHz} \implies \text{Io} = 1.5 \text{ A}$

generation of bunches :

RF photo gun

better emittance and more flexibility in time structure

acceleration :

re-use of LIL sections but high beam-loading

 $\Delta E/E \sim 10\%$ after 20 ns (64 bunches) for 1.5 A

bunch compression :

magnetic chicane : doesn't work for multibunch mode

the required R_{56} correlation term for single bunch rotation will introduce a large phase-shift between 1st and last bunch

(ex. $R_{56} = 0.05 \text{ m} \implies \Delta \phi = 180^{\circ}$!!! at 30 GHz)

velocity bunching : 3 LIL sections are required

1 for compression and 2 for acceleration

bunchlength after compression dominated by

- initial energy spread and
- space charge

Alban Mosnier - CTF3 collaboration meeting November 2005

 $\sigma_{x}(m)$

Velocity bunching (single bunch results)

Alban Mosnier - CTF3 collaboration meeting November 2005

Effect of beam-loading

- LIL section = quasi-constant gradient structure
- 9 constant impedance families linked by 4 linearly tapered transition cells
- \Rightarrow Transient calculations for field set up and beam loading

Analysis using the coupled-resonator model

- any accelerating structure (CI, CG, quasi-constant, etc)
- space harmonics included
- dispersive effects included (section = passband filter)
- > any waveform of input *rf* pulse
- beam interaction : propagation of the induced waves with dispersive effects

64 bunches Q_b =0.5 nC F_b=3 GHz \Rightarrow 1.5 A

For the whole linac => $\delta p/p \sim 11\% !!$

compression LIL section

compression : « off-crest » beam-loading \Rightarrow energy drop + large phase shift

Energy and Phase deviations :

 $\Delta E = 2.8 \text{ MeV}$ $\Delta \phi = 6.8^{\circ} @3GHz \implies 68^{\circ} @30GHz$

1st compensation method

section detuning to compensate the phase shift $\Delta F = + 0.789 \text{ MHz}$ extra cooling required ~ 15°

Alban Mosnier - CTF3 collaboration meeting November 2005

2nd compensation method

magnetic chicane to compensate the multi-bunch phase-shift

without altering the single-bunch characteristics

The compact CTF2 chicane (length $\sim 2m$) with R₅₆ from 6 to 90 mm is a good candidate to perform this compensation

<u>single-bunch</u> : slight increase of the bunchlength can be canceled by a small correlation term $\sim 1.5^{\circ}$ RF phase shift

while keeping the main objective main changes :

- in-situ photocathode prep chamber \Rightarrow Q.E. degraded \Rightarrow Q_b ~ 0.25 nC
- 1 single RF source

Lay-out in CLEX 40 Collab. meeting 2004 m **FB** DUMP <u>AAA</u> DUMF ωE ┲₽₽ l2m -DA 15 m Probe beam injector 13 m DUMP Instrumentation Testbeam 1 000 1m wide passage all around

3 LIL sections + « multibunch » chicane

total length ~24 m from left wall \Rightarrow 2-branch dipole, Instrumentation Test Beam ~10 m

Alternative scheme to save space

Theoretically & experimentally, it has been shown that for low charge <1 nC **bunch compression can take place in a photocathode rf gun** when rf gun phase \rightarrow -90° (zero crossing) *"Experimental observation of high-brigthness microbunching in a photocathode rf e gun" X.J. Wang, X. Qiu, I. Ben-Zvi PRE, vol.54 (oct. 1996)*

Alban Mosnier - CTF3 collaboration meeting November 2005

RF gun compression option

to further decrease the bunchlength down to 225 μ m at 0.5 nC

- \Rightarrow increase field (85 \rightarrow 120 MV/m)
- \Rightarrow and/or go closer to zero-crossing but transmission < 100%

the rf gun compression option can save

1 LIL section and magnetic chicane ~ 7 m

it is worth checking carefully ...

Diagnostics Beam Line

$$\sigma_{BL} = \sqrt{\sigma_{ON}^2 - \sigma_{OFF}^2} = 0.197mm$$
$$\sigma_{BL} = R_{12} \cdot \frac{U}{E} 2\pi \frac{\sigma_z}{\lambda} \longrightarrow \sigma_z = 0.223mm$$

RF deflector powered by a klystron of DB Linac

Vertical deflection at zero crossing

 $\sigma_{v OFF} = 0.04 \text{ mm}$

- Input power 7 MW \rightarrow U=1.55 MV/m
- Beam energy E=177 MeV
- Bunch Length σ_{z} =0.225 mm (rms)
- R_{12} = 1.6 m (from cavity to screen)

Bunch length measurement

X-Y (mm-mm)

TraceWin - CEA/DSM/DAPNIA/SACM

Ele: 11 [2.6475 m] NGOOD : 30000 / 30000

- assuming spectrometer $\alpha \approx 30^{\circ}$, $\rho \approx 1 \text{ m}$
- synchrotron light on the OTR \Rightarrow C-foil shielding (as proved on CT line)
- Time resolution with bandwidth > 250 MHz requires new ADC cards

Beam Position Monitor

Specifications : single bunch & multi-bunch operation (1-64 @ 3 GHz) 0.5 nC

- reentrant cavity original design from R. Bossard (CERN)
- proposed and developed for TTF (M. Luong, C. Simon DAPNIA)

new design for CALIFES:

- higher dipole frequency with larger frequency separation between monopole and dipole modes
- low exposition of coupling loops to electric fields

mode	F (GHz)	Q	R/Q
monopole	3.85	24	22.3 (on axis)
dipole	5.94	43	1.1 (at 2 mm)

dipole mode : will be tuned to 5.996 GHz for resonant operation with 64 bunches

Beam Position Monitor

Electronics

- 180° hybrid coupler
- direct detection for sum signal
- synchronous detection for delta signal

Summary

- good linearity and resolution ~ 10 μm
- should not be expensive (standard electronics)

- 2005 : definition of the probe beam linac
 - \Rightarrow to freeze the architecture before Christmas !!!
 - 2006 : specifications setting up, fabrication of components additional human ressources expected beginning of 2006
 - 2007 : installation in CLEX building assumed ready end of 2006
 - 2008 : start of commissioning

THERE IZNOGOUD PROBE BEAM ... WITHOUT CALIFES !!!

N°		Nom de la tâche		2005				
	0		Î	ri 1	Tr	ri 2	Tri	i
1		CTF3 / Probe Beam Lianc	Ē	•	01	/0/3	3	
2		Conception générale	1	•		-		
3		Calculs préliminaires	1			-		
4		Simulations avec canon RF	1					
5		Calculs optique faisceau						
6		Photo-injecteur	1	-		-		
7		Optimisation canon HF		╘┢╢				
8		Etude méca cavité canon RF						
9	<u> </u>	réalisation cavité + test						
10		Etudes système laser						
11	<u> </u>	montage sur site						
12		test sur banc						
13		Systèmes RF					1	
14	III	Modulateurs : specs						
15	<u> </u>	Modulateurs : fabrication						
16		Klystron - auxiliaires - BOC						
17		installation sources						
18		Distribution RF : specs						
19		Distribution RE : fabrication						
20		Bas niveau RF : CdC						
21		Bas niveau : fabrication						
22		câblage-montage						
23		Diagnostics						
20		Meeureure noeition						
27		faisabilitá simulations						
26		électronique : CdC, sous-traitance, test						
20		mécanique : CdC, sous-traitance, test						
28		Mesureur émittance (OTR)					1	
20		définition expérience						
30		étude mécanique						
31		traitement d'image						
30		Meeureur lopqueur de paquet						
33		définition expérience						
34		cavitá dáflactrice						
35								
36		source PE						
37		Alimentations						
38								
30		Svetèmes Vide			-			
40		Ftude vide			Ĭ			
40		enpro montere			8	_		
40		Contrôle Commande						
42		eupervision						
43		supervision sutomates (soff)						
44		Implantation Intégration				_		
40		Etude						
40		Intégration (2 projeteurs)						
		Réal mécanique						
40		Electrotechnique : baies et câblege						
50		Pré_étude CdC quivi de réal						
50		câblare sur site						
50		Montage eur eite						
52		Installation composents						
53		Commissioning						
54								
22	1	Losais et faisceau	1					

Time schedule

ember 2005