

Beams diagnostics electronics for the CTF3 Combiner Ring

Louis Bellier, Richard Hermel, Yannis Karyotakis, Julie Prast, Jean Tassan, Sébastien Vilalte

LAPP - Annecy

Julie PRAST, LAPP Annecy

Reminder : Beam parameters in the Combiner Ring

Beam current range : 1A - 35 A Beam pulse length : 140 ns – 1500 ns Repetition rate : 5Hz - 50 Hz

Beam Position Monitor (BPM)

- Inductive sensor delivered by INFN:
 - Works as a transformer excited by the beam.
 - 4 electrodes located on top and bottom.
 - Max horizontal deviation : +/- 15 mm
 - Max vertical deviation : +/- 10 mm
 - Expected resolution : 50 μ m
 - Total length : 24 cm.

Signal amplitude depends on the beam position and the beam current.

Existing Electronics

Julie PRAST, LAPP Annecy

LAPP's involvement

- Equip the Frascati BPM of the Combiner Ring.
- Analog part : Final electronics by next summer.
 - From electrode voltages A, B, C,D, summing and 2 differences are generated.
- Digital part : Complete study for the end of 2006
 - Analog to digital conversion
 - Local calculations
 - Data transmission / reception through optical fibers.
 - Shaping for the acquisition part.

Full compatibility with the existing electronics.

Analog electronics (1)

- Horizontal and vertical deviations :
 - $V_{\Delta V} = (A+B) (C+D)$
 - $V_{\Delta H} = (B+C) (A-D)$
- Sum proportional to the beam current :

- V $\Sigma = A+B+C+D$

- A similar electronics has been developed by M. Gasior for the Linac part, but with different beam parameters.
- A first study was made at LAPP.
 - Draft schematics.
 - Components ordered.
 - Home made proto for the beginning of 2006.
 - A BPM should be received from INFN by the end of the year.
 - First tests will be done using the Calibration input.
 - Final validation with wire test bench?

From Marek Gasior (CERN)

Analog electronics (2)

- 5 decades of BW required :
 10 kHz 100 MHz
- High output voltage range delivered by BPM (for 35 A current beam):
 - 0V 40 V on the electrodes
 - 0V- 88 V for the sum.
- Expected numbers of the LAPP proto design :
 - 3.8V max output amplitude
 - 140µV RMS output noise
 - Output dynamic range = 27.10^3

From Marek Gasior (CERN)

Analog to digital conversion (1)

• 12 bits, 200 MSPS ADC are foreseen :

- 12 bits to keep a resolution of 50 μm on the 30 mm maximum deviation and a SNR of 7.
- Min sampling @ 200 MHz = 2 * max Analog bandwidth.
- => 12 bit, 200 MSPS ADC reach the limits of current techno. Three ADC are needed per BPM (one per voltage).
- Possibility to increase the sampling frequency, using an analog memory.
 - IN2P3 has developed the MATACQ chip.
 - Circular buffer of 2500 samples.
 - Sampling frequency up to 2 GHz.
 - Dead time between 2 bunches could be used to digitalized data.
 - = > But this increases also the design complexity !

Analog to digital conversion (2)

- Most of 12 bits 200 MSPS ADC have ENOB bellow 11.
 - ENOB = Effective Number Of Bits

Reference	Resolution	Sampling Frequency	ENOB	Voltage supply
AD 9430	12 bits	210 MSPS	10.5 @100 MHz	3.3 V
AD12400	12 bits	400 MSPS	10.8 @100 MHz	3.3 V
Maxim 1214	12 bits	210 MSPS	10.6	1.8 V
Maxim 1215	12 bits	250 MSPS	10.4	1.8 V
Telasic 1411	14 bits	250 MSPS	11.5	+/-5 V
VTR 2537 (linac)	12 bits	50 MSPS	10.5	?
SIS 3320 (CR)	12 bits	200 MSPS	10.5	?

Do we accept an effective resolution bellow 12 bits ? Current BPM have ADC with ENOB equal to 10.5.

Calculations and optical transmissions

- Data transmission through optical fibers..
 - Fast and high security point to point connection between the front end and the acquisition.
 - Transmission of BPM raw data.
 - Optical transceivers also allow data reception. This can be used for the online configuration and the calibration.
 - 150 μs are needed to output data from 1500 ns long pulses, sampled at 200 MHz, on OF running at 1 Gbits/s.
 - => OK for a pulse repetition period = 20 ms.
- A digital interface is required between the ADCs and the optical serializer.

=> Digital logic that will be included in a FPGA.

- This FPGA could also be used to make local calculations and formatting.
 - Online beam parameters (average current, average position, maximal deviations ...).
 - Local filtering and feedback calculations.
 - BPM tagging and data formatting (header, trailer).

- ...

Functional diagram of the Front End electronics

Acquisition part

- Acquisition electronics
 - Data reception through optical fibers.
 - Several BPM treatment per board. 8 ?
 - Possibility of calculations and formatting in a FPGA.
 - VME interface.
 - Driver to be developed.

=> Full compatibility will be kept with the current system

Conclusion

- Happy to join the CTF3 collaboration.
- LAPP's project aims to :
 - Transmit signals in differential mode to avoid perturbations. (sum + differences + optical fiber)
 - Reduce number of cables, but also the cable cost.
 - Offer the possibility of local digital calculations and formatting.
- Some parameters to be checked :
 - ADC resolution and dynamic range.
 - Calibration mode.
- Radiation level to be understood :
 - Do we need rad-hard electronics or move away from the beam ?
- Test bench :
 - Do we need wire test bench for the electronics ?