

Principles of radiation protection, activation and radiation monitoring

M. Rettig, CERN Safety Commission Radiation Protection Group

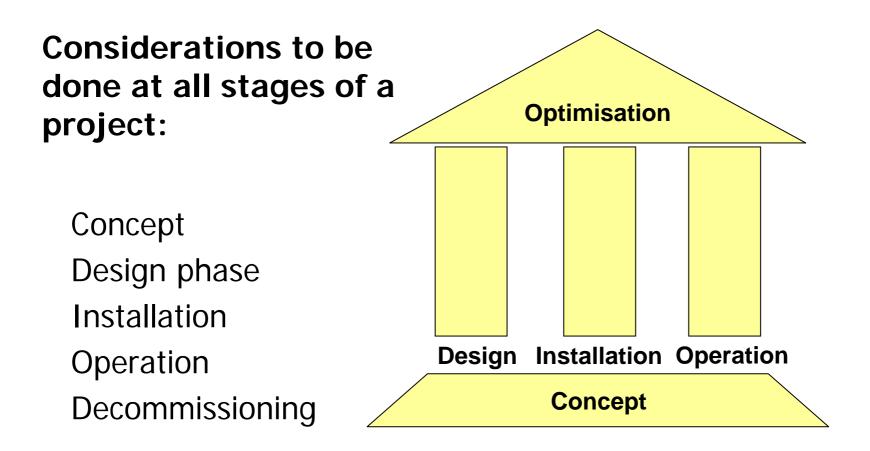
Markus Rettig Radiation Protection Group

Outline

- Radiation Protection principles
- Activation issues
- Radiation Monitoring System for CTF3

Justification

All exposure to ionising radiation needs to be justified.


Limitation

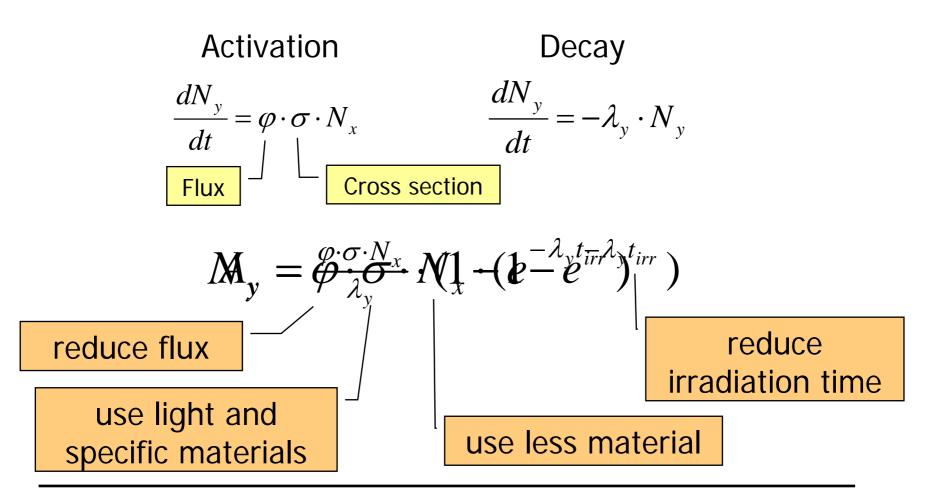
The dose of any individual must not exceed the legal limits.

Optimisation

Individual as collective dose have to be reduced to a reasonable minimum. (ALARA = "As Low As Reasonable Achievable").

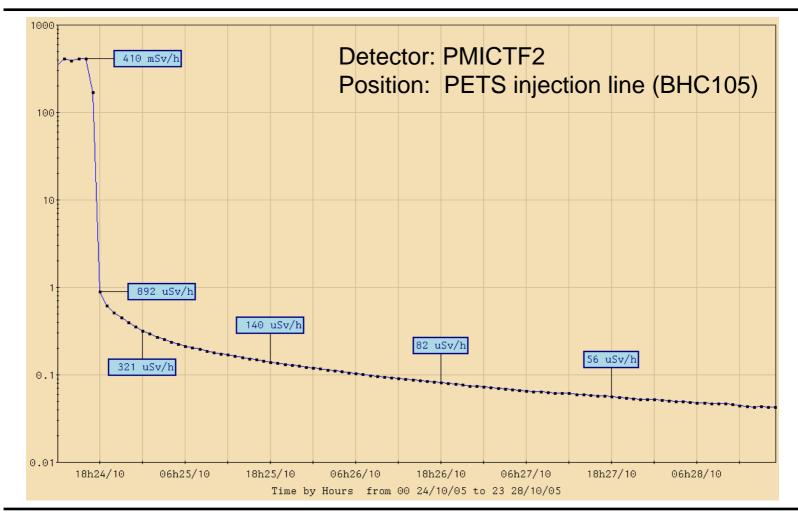
Production of radioactivity

Safety Commission


Activation of accelerator components by high energy bremsstrahlung and neutrons.

> Production of various nuclides from nuclear reactions: (γ, n) (γ, np) (n, γ) ...

Markus Rettig Radiation Protection Group



Markus Rettig Radiation Protection Group

Decay

Markus Rettig Radiation Protection Group

Most important isotopes produced in steel and iron from high energy electron beams:

Reaction	Halflife	h ₁₀ [mSv/h/GBq]	γ Energy [keV]
Ni-58(γ,n)Ni-57	36 h	0.278	1377, 127, 1920
Ni-57(decay)Co-57	272 d	0.021	122
Co-59(γ,n)Co-58	71 d	0.147	810
Mn-55(γ,n)Mn-54	312 d	0.126	835
Fe-56(γ,np)Mn-54	312 d	0.126	835
Cr-52(γ,n)Cr-51	28 d	0.005	320
Co-59(n,γ)Co-60	5.3 a	0.366	1332, 1173

Minimising activation

Reduce dose rates Reduce radioactive waste

Reduce individual and collective doses

Factors to act on:

- Best choice of material
- Careful installation and alignment
- Consider ergonomics for installation of components in the building.
- Beam control and diagnostic instrumentation

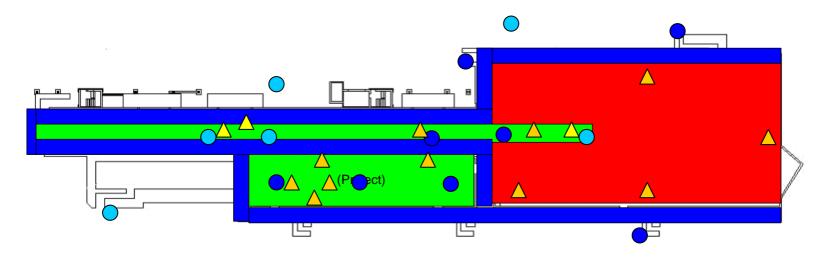
Existing System

ARCON (developed for LEP)

- 6 monitors for stray radiation survey
- 3 monitors for induced activity
- \rightarrow not possible to extent to future needs.

Future system for CTF3 operation with CR and CLEX:

RAMSES (developed for LHC and CNGS)


- 8 additional detectors for stray radiation survey
- 11 additional detectors for induced activity monitoring

Radiation monitoring system

Safety Commiss

(preliminary)

- Area radiation monitor (γ , n) (14 channels)
- $\triangle \triangle$ Induced Activity Monitor (γ) (14 channels)
 - New channels

• Survey at points of weak shielding

Existing channels

• Survey at known or expected loss points

Cost estimate

Item	Number of items	Total (kCHF)
Area monitors	14	175
Induced activity monitors	14	70
Monitoring stations	4	24
RAMSES console	1	3
Mains, Ethernet		6
Cabling		70
Sum		348

Installation will be staged with the progress of the CR and CLEX.

Summary

- Optimisation is everybody's task in all parts of the project
- Activation is an issue at CTF3. This must be considered for the installations of the CR and CLEX.
- A more extensive radiation monitoring system is required. The size of the new system is mainly determined by the constraints of the existing infrastructure and the complex beam line installations.

... Limitation

Annual limits

Categorie A workers: 20 mSv/year Categorie B workers: 6 mSv/year Public: 1 mSv/year

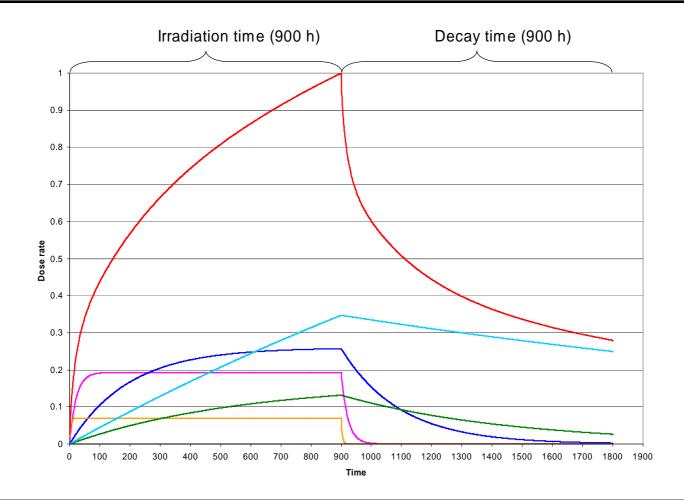
Derived limits (constraints)

Design constraint: 6 mSv/year

Guideline values

Ambient dose rate values for different areas:

Supervised Area	0.5 µSv/h	2.5 µSv/h
Simple Controlled Area	3 µSv/h	10 µSv/h



Process to minimise doses to persons:

- 1. Previsional radiological risk estimation:
 - Beam losses \rightarrow activation level estimation
 - Dose constraint \rightarrow Intervention planning
 - Determination of max. admissible losses and minimum decay times.
- 2. Comparison of different scenarios and solutions in order to minimise the radiological impact.
- 3. Consideration of social, scientific and economical aspects.
- 4. Documentation

Activation and decay

Markus Rettig Radiation Protection Group