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motivation

high charge density |  could aggravate

(small emittance) the effects of coherent
& short bunch length synchrotron radiation

iIn CLIC damping ring D and Touschek scattering

+ avallability of new tools to quantify these effects



Touschek effect:

single particle-particle scattering inside bunch; momentum transfer
from transverse into longitudinal plane; particle kicked outside of

rf bucket; intrabeam ~ multiple, Touschek ~single scattering

lifetime limit was first seen in the small AdA storage ring
[C. Bernadini et al., PRL, v. 10, 1963, p. 407] and first
explained by Bruno Touschek

main limitation of beam lifetime for all low-energy lepton rings,
e.g., LERs of PEP-Il and KEKB, and most light sources;
causes proton beam loss & halo at LHC

ATF uses Touschek lifetime ~(bunch volume) for emittance tuning
& acceptance measurements [F.Zimmermann et al, ATF-98-10;
T.Okugi et al., NIMA 455, 207, 2000], T1oyschek—2 MiN. at ATF

In CLIC 100-Hz operation beam stored for 90 ms; but strong IBS!



Touschek lifetime

A. Wolski, ILC America Workshop

e large-angle scattering within bunch leads to particle loss because of limited
momentum acceptance.

¢ Main lifetime limitation in 3rd generation synchrotron light sources.
- Generally operate with emittance ratio 1% or more to achieve lifetime of several hours
- Lifetime falls to a few minutes with very low coupling in low energy machines
- Strongly dependent on momentum acceptance (limited by dynamics or RF voltage)

e An issue for damping rings during commissioning and tuning
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general behavior and scaling

dN, , 1 non-exponential
=—aN » IN(t) = N
dt b ( ) 1+ oN 1 ol decay

approximate formalism [H. Bruck, J. le Duff, 5" HEACC 1965;
R.P. Walker, PAC87; U. Voelkel, DESY 67/5, 1967,
H. Wiedemann, PEP-Note 27, 1973]]
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exact formalism including horizontal and vertical dispersion
Implemented in MADX — in collaboration with C. Milardi/INFN

and with help by F. Schmidt

reference:

THE TOUSCHEK EFFECT IN STRONG FOCUSING STORAGE RINGS.

By A. Piwinski (DESY), DESY-98-179
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Touschek scattering rates in CLIC Damping Ring

local loss rate [1/s] accumulated loss rate [1/s]
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Touschek lifetime ~4.19 hr (> ILC lifetime)
more than sufficient for beam tuning
note: rates much larger in the arcs than in wiggler
parameters:

V,=2.43 MV, f,=1.5 GHz, N;=3.1x10°, 5,=1.62 mm, 5;=0.128%, £,=0.12 nm, £,=675

fm, E=2.424 GeV, y¢,=0.57 um, ve,=3.2 nm, “yg,"=5030 eVm, h=1800



Coherent synchrotron radiation:

bunch interacts with long-wavelength coherent synchrotron
radiation from dipoles and wigglers; similar to impedance effect,
but ‘CSR wake’ in front of the source

can cause energy spread, emittance growth, uwave instability

various formulae for bunch compressors exist from Russia,
DESY (Saldin et al., Derbenev), BNL, SLAC (Warnock, Stupakov),
LBNL (Venturini),...

SLAC estimate for damping rings first presented at Nanobeam’02
by T. Raubenheimer; later extended results published in

“Impact of the wiggler coherent synchrotron radiation impedance
on the beam instability and damping ring optimization,”

J. Wu, G. V. Stupakov, T. O. Raubenheimer, and Z. Huang

Phys. Rev. ST Accel. Beams 6, 104404 (2003)
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beam unstable only
at low frequencies;

Imaginary part of the normalized frequency
L
-
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FIG. 1. (Color) The imaginary part of the normalized fre-
quency £} as a function of the normalized wave number k/k;,
for the NLC main damping ring [16], where k; 1s the on-axis . -
wiggler fundamental raclfiatigon Wgave number defined in Eq. (14). nggler acts S“ghtly
The solid curve includes the entire CSR impedance while the Stablllzmg'

dotted and dashed curves include either the steady state dipole

CSR impedance or the wiggler CSR impedance, respectively.

The inset shows a blowup of the low frequency region where |LC a|WayS stable
the beam is unstable.



estimates & scaling

CSR can increase energy spread & emittance & cause pwave-like instability

CSR causes

nstability it |y < Aq

Landau damping at
wavelengths shorter

than A, «
dispersion relation

(G. Stupakov, et al.)

beam pipe shields at
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1/t [s'] Aer ... CSRgrowth rates

w/o Landau damping preliminary
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my estimates for ILC 7\‘ [mm

numbers refer to the parameters A~11 (34), R~86 (10) m, L~100 (317) m,
n~1.2x104, C~17 km, 65~1.3x103, I~64 A, a~2 cm for arc (wiggler)
CLIC: R~10 m (5) m in arc (wiggler); shielding cutoffs somewhat higher



CSR impedance [Saldin et al., Stupakov et al., Wu,...
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recent progress:

novel code was developed to calculate CSR effects in a storage
ring over many turns; shielding computed from actual vacuum
chamber boundaries, no parallel-plate approximation

reference:

Calculation of coherent synchrotron radiation using mesh
T. Agoh and K. Yokoya, Phys. Rev. ST Accel. Beams 7,
054403 (2004)

caveats:

at the moment code only treats longitudinal CSR effects;
considers only arc dipole magnets, wigglers not yet included
(should have a negligible contribution if SLAC paper correct)

extension to wigglers, transverse plane and bunch compressors
IS foreseen in near future;
this code can also compute wake of tapered collimator



main approximations in Agoh-Yokoya code:

(¢c) The radiation components propagating at large an-
ogles with respect to the beam are i1gnored (paraxial
approximation). In particular, this assumption excludes
a vacuum chamber having a projection from the wall,
which would cause a wave propagating along the opposite
direction.

(d) The bunch shape does not change. This assumption
can be relaxed so as to include “predictable’” changes
(those estimated by a simple optics calculation). The
dynamic change of the bunch shape due to the CSR itself
cannot be included.



T. Agoh, presentation at 6" higher-luminosity B factory workshop in KEK

SuperKEKB impedance from code & KSB criterion
e |Z(k)/k| vs k for different chamber sizes. (r = Half Height)
6 1 I 1 | I 1 I | I I I | I 1 I | I I 1
i Half Height of &/ &/ & A
f the Chamber & &/ 7
5*_ 5 /kv/ //OD //Q)// L
i L < < g/
1 Bunch -
_ 4;_Sp;e\c\trum Ak) /// °
CE: ] //%%{Q
= ] Og=3mm Y /
= 3- a,=333m // B
= // T hreshold
IS : e
=] \2// (uf’;;@b}eﬁ o, = 3mm
I ~/~— "~ — >~~~ — — _Threshold { I — omA
| # 4@0@9/ (stable) 0 —
1 ; // T /E///) |
I ey P
D_ \ | | T T ‘ \|— ‘ T
0 200 400 600 800 1600
Wave Number k [1/m]
(3mm, 2mA) bunches are stable in the chamber: r < 20 ~ 25mm.



T. Agoh, presentation at 6" higher-luminosity B factory workshop in KEK

threshold by particle tracking with CSR (SR, QE & RW also included)
e Charge Distribution and Energy Spread in SuperKEKB (r = 47mm)
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Eg(z) [kV/m]

transient behavior of wake with beam pipe
compared with-free space steady-state solution
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Imaginary and real part of CSR and RW impedance vs k
for SuperKEKB example [T.Agoh, private communication]
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» at small k, CSR impedance is strongly suppressed

» so at small k, CSR in resistive pipe approaches the RW impedance

» for large k, CSR in resistive pipe ~approaches unshielded CSR formula.

» at large k, remaining difference between CSR in resistive pipe and CSR
formula due to transient effect and shielding

» sum of CSR and RW impedances nearly equals CSR in resistive pipe.
[blue line(2) and the red dots(5) is almost same; (2)=(1)+(4)holds !]



Effect of CSR in the CLIC Damping Ring

T. Agoh, K. Yokoya, M. Korostelev, F. Zimmermann

Parameter symbol value
bunch population N, 3x10°

rms bunch length o, 1.3 mm
ring circumference C 357 m
beam-pipe radius a 20r4cm
number of arc bends Npend 96

Inverse bending radius 1/p 0.115 m*
length of arc bend l, 0.545 m
revolution frequency foy 840 kHz
bunch current lbunch 0.4 mA
momentum compaction ac 0.731x10*
rf frequency Vi 1.5 GHz
harmonic number h 1786
energy loss / turn U, 2.192 MeV
rf voltage V. 3 MV
beam energy E, 2.424 GeV
damping time 7, 1.32 ms
no. of macroparticles N ocro 10°

no. turns N 8192

Parameters
for CSR simulation

Longitudinal CSR
Green-function

wake field is first
computed by field
matching of the

forward waves and

It iIs then used In a
multi-particle tracking
simulation including
radiation damping and
resistive-wall wake field.
The calculation includes
all transient effects.
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conclusions

“CLIC works!” [T. Agoh*]

— CSR & Touschek surprisingly
benign for CLIC parameters and
present CLIC damping-ring lattice

— further CLIC CSR calculations are
planned with T. Agoh

*CLIC result became a chapter in
his Tokyo University Ph.D. thesis



