Electrostatic Storage Devices @ MPI - K

Dr. Carsten P. Welsch

Present Situation: AD @ ... here !

10¹¹ cooled antiprotons at 30 GeV

LoI + TR: FLAIR

Motivations

- Spectroscopy as test of QED and CPT
- Gravitation of antimatter

- Correlated dynamics in collisions
- Antiprotons as hadronic probes
- Medical applications: cancer therapy

Facility Layout

- Energy range meets requirements
- Fast ramping already active
- Excellent vacuum
- Electron cooling integrated
- Space for internal targets
- Injector can be used for test & training

Needs "only" to be transported to GSI.

Magnetic <-> Electrostatic

$$\frac{mv^2}{R} = q \cdot v \cdot B$$

$$R \cdot B = \frac{1}{q} \cdot \sqrt{2 \cdot m \cdot E_{Kin}}$$

$$\frac{mv^2}{R} = q \cdot E$$

$$R \cdot E = \frac{2 \cdot E_{Kin}}{q}$$

CLIC meeting, CERN - February, 4. 2005

- Variable down to very low energies 300 keV ~ 20 keV
- High luminosity for in-ring experiments
- Well defined extracted beams: small emittance small momentum spread
- Multi-User operation:
 2 straight lines for in-ring experiments
 1 extraction port
 additional beam lines possible
- Central requirements
 - Δt ~ 500 nsec for injection into trap
 - $\Delta t \sim 2 \text{ nsec} / 10^4 \text{ ions for collision experiments}$

CLIC meeting, CERN - February, 4. 2005

Energy	Time Structure
300 keV	$\Delta t = 50 \text{ ps}$
20 keV	∆t = 200 ps

- Electron cooling at lowest energies
- Energy variability
- Ultra-short bunches

....never realized in electrostatic ring !

Cryogenic system required for HCI

Motivation

p < 10⁻¹³ mbar, T=2K !

Prototype - Cryogenic Trap

