

Drive Beam Generation & decelerator sectors

The studies on CLIC accelerating structures point in the direction of shorter structures, with shorter fill-time and RF pulse length (about a factor 2).

These structures can provide RF-to-beam efficiencies equal or better than the "old" structures and require about the same power per meter.

What are the consequences on the drive beam generation complex?

In particular these quantities are linked to the RF pulse length:

- delay loop and combiner rings dimensions
- number of decelerator sectors
- drive beam energy and current

- If the 30 GHz RF pulse length is shortened, the "obvious" consequence is an <u>increase in the</u> <u>number of drive beam decelerator sections</u>
- With a straightforward scaling, the length of the delay loop and the rings decrease

BEAM TRANSVERSE STABILITY

CLIC

IN THE CLIC COMBINER RINGS

R. Corsini and D. Schulte

CERN/PS 2002-072 (AE) CLIC Note 539

In the first CLIC combiner ring, the combination factor is also four; the 10 nC bunches are spaced by 32 cm at injection, and the deflector frequency is 937.5 MHz. We have already mentioned that the beam stability in this ring is of less concern, since the coupling is weaker. In the following we will give a justification for this statement, based on scaling arguments. The total deflection corresponding to an RF power input P_{in} is:

$$\theta = \frac{\sqrt{1/v_g \omega r' P_{in} L_D}}{E_{beam}} \tag{2}$$

where $\omega = 2\pi\nu$, r' is the shunt impedance per meter, v_g is the group velocity and E_{beam} the beam voltage. If the deflector geometry is scaled linearly with the frequency, $v_g = \text{const}$, $L_D \propto 1/\nu$ and $r' \propto \nu$. In this case the RF power needed to obtain a given deflection angle is independent from the frequency. On the other hand, the maximum integrated wakefield kick due to an offset bunch train in such a structure is given by: <u>Drive beam stability in RF</u> <u>deflectors</u> <u>scaling with frequency</u>

$$\delta x' = \frac{\omega^3}{4\pi c^2} \frac{r' L_D^2}{E_{beam}} q_b \Delta x \tag{3}$$

where Δx is the train offset and q_b is the bunch charge. Using Eqs. 2 and 3, one then get $\delta x' \propto \nu^2$. Therefore, when following a simple linear scaling of the deflector, and keeping the injection angle and the β -function constant, the stability in the first ring is improved with respect to the second ring. It must be noted that an even more favourable scaling can be obtained by increasing the power in the first ring deflectors and reducing their length, if the limiting factor is the peak surface field (which scales as $\sqrt{c^2/v_g}\omega r' P_{in} \propto \nu \sqrt{P_{in}}$), rather than the available power.

Example: reduce the pulse length by a factor 2

<u>OLD parameters</u> (TRC, 3 TeV)

CLIC

CM Energy (TeV)	3.3	
Average Gradient (MeV/m)	120	
Linac Length (Km)	27.46	
Repetition Frequency (Hz)	100	
Pulse Length (nsec)	102	
0 ()		
Number of bunches	154	
Charge per bunch (10^9)	4	
HE Beam Total Energy (KJ)	151	
Number of Drive Beams	22	
Rf Pulse Total Energy (KJ)	622	
Drive Beam Pulse Length (nsec)	(130	
Frequency Multiplication	32	
Deceleration Section Length (m)	624	
Delay Loop Length (m)	39	
1st Combiner Length (m)	78	
2nd Combiner Length (m)	312	
Drive beam Pulse (Microsec)	92	
Total Drive beam Energy (KJ)	839	
Drive Beam Energy (GeV)	1.99	
Drive Beam Current (A)	4.6	
Drive Beam Bunch Charge (nC)	9.8	
Frequency of DBA (MHz)	937	
Length of DBA (m)	515	
Structure Length (m)	4.67	
Power per Structure (MW)	85	
Number of 50 MW Klystrons	221	
Total RF Efficiency (%)	40	
Wall to beam Efficiency (%)	9.7	

		1
CM Energy (TeV)	3.3	
Average Gradient (MeV/m)	120	
Linac Length (Km)	27.46	
Repetition Frequency (Hz)	100	
Pulse Length (nsec)	51	
Number of bunches	77	
Charge per bunch (10^9)	4	
HE Beam Total Energy (KJ)	75	
Number of Drive Beams	More sectors 44	
Rf Pulse Total Energy (KJ)		
Drive Beam Pulse Length (nsec)	65	
Frequency Multiplication	32	
Deceleration Section Length (m)	311	
Delay Loop Length (m)	19	
1st Combiner Length (m)	Small rings 39	
2nd Combiner Length (m)	155	
Drive beam Pulse (Microsec)	92	
Total Drive beam Energy (KJ)	Low initial 417	
Drive Beam Energy (GeV)	0.99	
Drive Beam Current (A)	energy 4.6	
Drive Beam Bunch Charge (nC)	9.8	
Frequency of DBA (MHz)	937	
Length of DBA (m)	256	
Structure Length (m)	4.67	
Power per Structure (MW)	85	
Number of 50 MW Klystrons	110	
Total RF Efficiency (%)	40	
Wall to beam Efficiency (%)	9.7	

Pros & Cons

- <u>Number of pulses/decelerator sections</u>: more turn-arounds (cost), less energy per pulse (effect of losses)
- <u>Small delay loop</u>: the CTF3 delay loop is folded up due to space constraints, in CLIC it will be constituted by two lines => no problem
- <u>Small rings</u>: for the first combiner ring there is a problem \Rightarrow 78 m is already short
- <u>Other potential limitation</u>: short "hole" for fast extraction kicker in the 1st combiner ring
- <u>Low initial energy</u>: ring impedance and CSR cause an energy spread whose absolute value does not depend on energy => relative energy spread doubles

N.B.: The drive beam energy can be increased if the PETS impedance and the current are decreased, but the scaling of beam stability in the decelerator is unfavorable

The "old" parameters (10 nC/bunch, 2 GeV, beam current from 4.6 A to 150 A) seem a good compromise between transverse stability in the decelerator and collective effects (wakes and CSR) in the DB generation complex

Is there a way to stay in the same parameter space with short RF pulses ?

single DB generation complex

Daniel proposed time ago to combine the DB generation for both e+ and e- linacs, in order to improve the DB stability in the decelerator. This can be done as follows :

- Use a single accelerator with double length \Rightarrow double beam energy
- Same initial pulse length
- Same DL and CRs lengths
- Switch subsequent pulses to power the e+ and e- main linacs
- The distance between pulses in each decelerator is now doubled
- Half the number of decelerator sectors

"Double pulse" scheme

In the case of a short RF pulse, it is possible to use a single drive beam generation complex to feed both linacs, in a different way:

- Use a "short" delay loop (e.g., 21 m for 70 ns)
- Use "long" combiner rings (e.g., 84 m and 334 m for 70 ns)
- In each ring, two pulses will circulate (and be combined) at the same time
- The combined pulse couples can be split and sent to the e+ and e- main linacs
- The number of decelerator sections is "small" (e.g., 21)
- The drive beam energy is "high" (e.g., 2.4 GeV)

R. Corsini - 11/4/2005

"Double pulse" scheme

From DBA - 70 ns long "sub-pulses"

After delay loop - combination four by four in 2 batches in 1st combiner ring

After 1st combiner ring - combination four by four in 2 batches in 2nd combiner ring

^{4.46} μ**s**

<u>NEW parameters</u>

Parameter Table for 3 TeV Case		
CM Energy (TeV)	3.0	
Average Gradient (MeV/m)	117	
Linac Length (Km)	28.09	
Repetition Frequency (Hz)	150	
Pulse Length (nsec)	58	
· ····································		
Number of bunches	220	
Charge per bunch (10^9)	2.56	
HE Beam Total Energy (KJ)	135	
Number of Drive Beams	21	
Rf Pulse Total Energy (KJ)	465	
Drive Beam Pulse Length (nsec)	70	
Frequency Multiplication	32	
Deceleration Section Length (m)	669	
Delay Loop Length (m)	21	
1st Combiner Length (m)	84	
2nd Combiner Length (m)	334	
Drive beam Pulse (Microsec)	94	
Total Drive beam Energy (KJ)	628	
Drive Beam Energy (GeV)	2.37	
Drive Beam Current (A)	5.7	
Drive Beam Current (A)	181	
Drive Beam Bunch Charge (nC)	12.1	
Frequency of DBA (MHz)	937	
Length of DBA (m)	641	
Structure Length (m)	3.64	
Power per Structure (MW)	78	
Number of 40 MW Klystrons	352	
Total RF Efficiency (%)	40	
Wall to beam Efficiency (%)	11.6	
Total AC power (MW)	347	

Single DB generation complex: rings issues

Several issues were studied to check the limitations of beam energy in the combiner rings:

- Increased field in magnets
- Synchrotron radiation:
 - Energy loss
 - Power loss in vacuum chamber
 - Energy spread & emittance increase
- Coherent synchrotron radiation
 - Beneficial effect
- Deflectors
 - Higher power for given angle
 - Constant power from real emittance damping

Fields in magnets

Ring 1			Ring 2		
	1.2 GeV	2.4 GeV		1.2 GeV	2.4 GeV
 Dipole length 	1.4 m		 Dipole length 	1.4 m	
 Bending radius 	3.6 m		 Bending radius 	17.8 m	
 Dipole field 	1.1 T	2.2 T	 Dipole field 	0.22 T	0.44 T
 Quad length 	0.3 m		 Quad length 	0.3 m	
 Max quad gradient 	14 T/m	28 T/m	 Max quad gradient 	14 T/m	28 T/m
 Sext length 	0.3 m		 Sext length 	0.3 m	
 Max sext gradient 	26 T/m²	52 T/m²	 Max sext gradient 	120 T/m²	240 T/m ²

NB: Using the design of the yellow report on CLIC RF Power Source

Power loss from SR

CLIC

1st Ring - E = 1.2 GeV

mm

4.9 kW, 480 W/m total average

270 kW/m

$$\delta P|_{SR,turn} = -C_{\gamma} \frac{E^4}{\rho} \quad C_{\gamma} = 8.85 \, 10^{-32} \quad [m/eV^3]$$

CLIC

1st Ring - E = 2.4 GeV - 150 Hz

80 kW, 7 kW/m total average

Energy loss from SR and CSR

 σ = 2 mm, Qb = 12 nC

Both rings - ρ = 3.6 m - 18 m

An increase of the energy to 2.4 GeV is indeed possible

Energy spread and emittance increase from SR

$$\sigma E = 3.438 \, 10^{-8} \, \frac{\gamma^{\frac{7}{2}}}{\rho} \, [eV \, m]$$

NB: Nominal emittance $\varepsilon_{\rm N,rms}$ = 1 10⁻⁴ m rad $\Delta \varepsilon = 1.32 \ \pi \ 10^{-27} \ \frac{\gamma 6}{\rho^2} \left\langle H \right\rangle$ $\left[\mathrm{m}^{2} \mathrm{rad}\right]$ $\langle H \rangle \approx 1$ $1 \cdot 10^{-4}$ Norm Emittance Increase (m rad) 1.10⁻⁵ Ring 1 1.10⁻⁶ $1 \cdot 10^{-7}$ Ring 2 1.10⁻⁸ 1·10⁻⁹ 1.10^{-10} 1.10^{-11} 1.5 2.5 0.5 2 1 3 Beam Energy (GeV)

