Vibration measurements

Laboratories in Annecy working on Vibration Stabilization

Catherine ADLOFF

Benoît BOLZON

Franck CADOUX

Yan BASTIAN

Andréa JEREMIE Yannis KARYOTAKIS Claude GIRARD

Nicolas GEFFROY

Outline

1. Setup and goals

2. Sensors

3. Data aquisition

4. Data analysis with Matlab

5. Measurements

6. Stabilization techniques at LAPP

7. Stabilization techniques at LISTIC

1. Setup and goals

Goals :

- →Study sensors' resolution
- →Study signal/noise ratio
- \rightarrow Study of the ground displacement

2. Sensors

2 types of sensors :

 \rightarrow Seismic sensors : Measurement of the ground velocity

 \rightarrow Accelerometers : Measurement of the ground acceleration

Sensors	VE-13	Guralp CMG-	SP400U	GSV-320	ENDEVCO
		40 T			86
Sensitivity	1V → 1 mm/s	1V → 0.625mm/s	1V→1 mm/s	1V → 0.5 mm/s	1V → 0.1g
Garanteed	1 - 315 Hz	0,033 - 50 Hz	0,1-50 Hz	1 - 315 Hz	1-100 Hz
frequency					
range					
Quantity	2	2	2	2	2

Non magnetic

3. Data acquisition

- Home made DAQ based on PXI-4472B ADC from NI
 - ✓ ADC designed for spectral analysis : includes anti-aliasing...
 - ✓ Labview software for data acquisition (our development)
 - ✓ VE13, Guralp, SP400, GSV320, ENDEVCO sensors

> Bruel and Kjaer electronics

- \checkmark ADC also designed for spectral analysis, especially for modal analysis
- ✓ Pulse software for data acquisition (from the company)
- ✓ VE13, Guralp, SP400, GSV320, ENDEVCO sensors
- \checkmark Less electronic noise and better resolution

 \rightarrow Better results with accelerometers at low frequencies (same results with velocity sensors which have a bigger amplitude)

 \rightarrow This system has been used to show the current results Benoit BOLZON

4. Data analysis with Matlab

Benoit BOLZON

European Regional Meeting 2005-London

4. Data analysis with Matlab

<u>Example</u>: two sensors very close to each otherC(f) very close to 1 : coherent measurements of the motionC(f) is close to 0 : measurements are dominated by noise

Benoit BOLZON

European Regional Meeting 2005-London

4. Data analysis with Matlab

Introduction High frequency sensor VE13 Low frequency sensors

Goal : Sensors study and ground motion study

- ✓ PSD
- ✓ Coherence
- ✓ Resolution
- ✓ RMS displacement
- ✓ Signal/Noise ratio

Introduction High frequency sensor VE13 Low frequency sensors

Coherence

Frequency range : 1-315 Hz

Resolution

Introduction High frequency sensor VE13 Low frequency sensors

Introduction High frequency sensor VE13 Low frequency sensors

The accelerometers have the same amplitude as the velocity sensors and also a good coherence from 7Hz. Why not below?

Frequency range of ENDEVCO : 0.01Hz-50Hz

Introduction High frequency sensor VE13 Low frequency sensors

Introduction High frequency sensor VE13 Low frequency sensors

Problem of Signal/Noise ratio

-Acceleration amplitude is very low and very close to ADC noise below 7 Hz : almost only noise is being measured

- Velocity amplitude is much higher than acceleration amplitude and than ADC noise below 7Hz : signal is being measured Benoit BOLZON

Introduction High frequency sensor VE13 Low frequency sensors

- For accelerometers, signal/(ADC noise) ratio is less than 10 below 7Hz : too low

- For velocity sensors, this ratio is above 100 from 0.1Hz : quite high

Introduction High frequency sensor VE13 Low frequency sensors

FIGURE 1: MET TRANSDUCER

Electrolyte channel
Platinum mesh anocles
Platinum mesh cathodes
Hatinum mesh cathodes
Motoporous spaners
Housing

• 0.0167 to 75 Hz

- Non magnetic
- 20KV/(m/s)→very sensitive!!

SP500 sensors from EENTEC

Electrochemical motion sensor

- Special electrolytic solution
- Four platinum mesh electrodes (2 anodes and 2 cathodes)
- An external acceleration creates a differential pressure across the channel and forces the liquid to move with velocity V. Ions move to the electrodes .

Benoit BOLZON

1 Tesla testing

Introduction High frequency sensor VE13 Low frequency sensors

00 0 00 00

Both sensors in vertical direction

Same coherence with or without magnetic filed

Benoit BOLZON

Measurements with SP500 sensors done at SLAC by A. Servi

Same amplitude for the 2 sensors with B=0

Same amplitude for the 2 sensors with B≠0

Coherence B. Cross Correlation of ch0 8. ch1 0.8 0.6 0.4 D.2 0.0 -0.2 -0.4 -0.6 . 5E-Z 1E-1 15+0 10+11E+Z 2E+Z

Introduction High frequency sensor VE13 Low frequency sensors

Measurements with SP500 sensors done at SLAC by A. Seryi

Variations of condition in the building is demonstrated above with B=0, where 2 consecutive measurements are shown. Variation of conditions is noticeable and explains difference of spectra measured with and without magnetic field.

Conclusion : - No visible influence of high magnetic field on the MET sensors

- Very small size and high sensitivity : $20KV/(m/s) \rightarrow Signal/Noise$ ratio : high \rightarrow we hope that they can measure below 0.1 Hz

- Can be the sensors used for our prototype

With accelerometers, we are not able to measure ground signals less than 7 Hz even if the frequency range begins at 0.01 Hz :

- Ground acceleration is too small at low frequencies
- ADC noise is high at low frequencies
- \rightarrow Signal/Noise ratio too small at low frequencies

 \rightarrow Solution : an acquisition system with less noise at low frequencies or a sensor with a bigger sensitivity (more than 10V for 1g), but that is difficult to find on the market

With velocity sensors, we are able to measure ground signals above 0.2 Hz :

- Ground velocity is much higher than ADC noise and than ground acceleration at low frequencies

 \rightarrow Signal/Noise ratio big at low frequencies

Description Goal and Method

Measurements

Stabilization of the ground motion with the STACIS 2000 Stable Active Control Isolation System

User Interface Controller : to provide communications with and diagnostics of the STACIS 2000 system

Isolators : contain all the necessary electronics, vibration detection and correction devices, along with passive Isolators. For each isolator, a geophone measures vibration until a piezoelectric actuator makes correction. Benoit BOLZON

GURALP 40T

TMC

Description Goal and Method Measurements

Evaluate table action
Produce data to compare
with simulation
ENDEVCO 1

ENDEVCO 2

Description Goal and Method Measurements

Description Goal and Method Measurements

7. Stabilization techniques **@ LISTIC**

Mock up Principle of rejection **Results**

Experiments

7. Stabilization techniques@ LISTIC

Mock up Principle of rejection Results

Current objectives: Independently reduce the main resonances

For example, an identification of one mock-up... Benoit BOLZON

7. Stabilization techniques@ LISTIC

Mock up Principle of rejection Results

Rejection of 6 resonances : (without and with rejection)

CONCLUSION AND FUTURE

→ Future measurements

Smaller SP400 sensors are available at SLAC : should be the sensor used for the prototype because of its non-magnetic properties

≻B field measurement at CERN

Better understanding of the STACIS table : perhaps buy the next generation of our User Interface Controller for its adjustable parameters