Photo-injectors

- Overview of a photo-injector
- Photocathodes
- Lasers
- Guns
- CTF3 Drive beam photo-injector
- CLEX Probe beam photo-injector
- Photocathode developments

Photo-injector

(1)

The photo-injector is a source, it must fulfill the specifications and it must be available and reliable

Typical expected behavior:

- Operation time : 2000 5000 h / year
 Availability > 95 %
- MTBF > 1000 h ; MTTR < 4 h
- I long annual shutdown (2 3 months)
- # 2 or 3 short shutdowns / year (1 week)
- Total lifetime : ~ 10 years

Photo-injector

G. Suberlucq

Photocathodes

Three main sorts:

- Metallic photocathodes
- Activated Gallium-Arsenide photocathodes
- Alkali photocathodes
 - Cesium-iodide
 - Alkali-antimonide
 - Alkali-telluride

Weak part of photo-injectors

Metallic Photocathodes

- Require UV light and high laser power
- Special surface treatment for reasonable QE
- Well adapted for high electric field ≥ 100 MV/m
- Well adapted for "low" charge production, typically 1 to few nC per pulse and low mean current: few μA

With QE ~ 10^{-3} , Mg seems to be the best metallic photocathode

Activated Ga-As photocathodes Mandatory for polarized electron photo-injectors

G. Suberluca

Requirements

- Strong cleaning by heating and/or with H⁻
- NEA activation with $Cs+O_2$ or $Cs+NF_3$
- Very good vacuum < 10⁻¹¹ mbar
- Low electric field < 5 MV/m
- NO breakdown
- Very low dark current

Best performances

- Polarization ~ 90 % ; QE ~ 0.5 % @ 780 nm
- Low output energy ~ 25 meV
- Shorter pulse length ~ 80 ps

Main limitations

- Surface Charge Limit (SCL)
- Lifetime
- **Response time**

Could be overcome with the two photon process 8/10/05

Alkali photocathodes

Photocathodes		λ (nm)	QE (%)	Lifetime	
Alkali	CsI	< 200	20	years	Air transportable, Wavelength too short
iodide	CsI+Ge	< 270	0.2	years	Air transportable, Delicate conditioning process
Alkali antimonide	K ₂ CsSb Na ₂ K(Cs)Sb	< 600	10	Days- hours	Lifetime too short, UHV required
Alkali telluride	Cs2Te, RbCsTe	< 270	15	Months- weeks	Good lifetime and QE, UHV and UV light required

For the time being, Cs-Te photocathodes are the most used for high current and high charge production in operational photo-injectors

Improvement of alkali cathode preparation : Co-evaporation process

20 cath.	QE(%)
Min	8.2
Average	14.9
Max	22.5

Difficult thickness measurements and poor reproducibility

G. Suberlucq

Lifetime of Cs-Te photocath.

Dramatic improvement of QE and lifetime of photocathodes produced by the coevaporation process

 But photocathodes produced by coevaporation seem to be more sensitive to the vacuum quality

G. Suberlucq

Secondary Emission Enhanced photo-emitter

Proposal from I. Ben-Zvi et al. C-A/AP#149, April 2004, BNL

Cathode insert consist of :

- Alkali antimonide cathode
- A sealed diamond window (~10 μm thick)
- UHV in between

G. Suberlucq

- The diamond window is transparent to photons and electrons
- Electrons are produced by a laser beam shooting an alkaline cathode
- Electrons are multiplied by secondary emission by the diamond window

Expected advantages

- Very high equivalent QE ~ 1000 % !
- Low laser power
- Low thermal emittance (NEA surface)
- No mutual contamination between the gun and the photocathode
- Possible high mean current
- No load-lock system

Master Oscillator Power Amplifier setup to allow ps synchronization

STRONG progress in optical pumping and in lasing medium

- Laser diode pumped solid state (LDPSS) lasers
- Nd:Vanadate lasers are replacing Nd:YAG lasers
- Many new crystals : apatite (S-FAP, CLYPA, SYS, ...), tungstate (KYW, KGW), sesquioxyde (Sc₂O₃, ...) Yb³⁺ doped
- High power oscillator > 60 W
- Fiber laser (not yet actively mode-locked)
- High frequency mode-locked oscillator : 1.5 GHz commercially available
- Transversal and Longitudinal pulse shaping.

SMALL progress in frequency conversion

50-55 % IR to VIS ; 25-30 % VIS to UV

NLC Laser set-up proposal

NLC Source Laser Baseline Block Diagram

http://www-project.slac.stanford.edu/lc/local/systems/ Lasers/CombinedLaserSystem/laserr_d.pdf Pulses per train 1 - 200 adjustable

Pulse rate 357MHz or 714MHz

Pulse length 200psec to 700psec adjustable

Pulse temporal shape Square, or adjustable with 100psec bandwidth

Train temporal shape Adjustable: 30 nanosecond time constant

Wavelength range 750 to 870nm (with optics change)

Wavelength tuning range +/- 5nm remote tuning Bandwidth <1 nanometer

Pulse energy 5 - 30 micro Joules to photocathode maximum.

Transverse profile TEM00

Intensity Stability 0.5% RMS

Position stability <1% spot radius RMS

Wavelength stability 0.1 nanometers Bunch timing stability <10 picoseconds RMS System MTBF >1000 Hours (Single laser) System MTTR <4 Hours (Single laser) System lifetime >50,000 Hours

CERN - CTF3 Laser proposal

Design and construction supported by E.U. inside CARE - JRA - PHIN

CLIC meeting 28/10/05

G. Suberlucq

SPARC Laser proposal

Operating wavelength Repetition rate Number of micropulse per pulse **Pulse energy on cathode Pulse rise time (10-90%) Pulse length Temporal pulse shape Transverse pulse shape Energy jitter (in UV)** Laser-RF jitter **Spot diameter on cathode** Spot diameter jitter **Pointing Stability**

260-280 nm 10-100 Hz 1 500µJ (O.E.=10⁻⁵) <1 ps **2-10 ps FWHM Uniform (10% ptp) Uniform (10% ptp)** 1 % rms < 1ps rms Circular 1 mm 1% rms 1% diameter rms

<u>SPARC Laser group</u> C. Vicario, A. Ghigo, F. Tazzioli, I. Boscolo, S. Cialdi

Temporal pulse shaping

Liquid crystal spatial light phase modulator in Fourier plane

D. Meshulach, D. Yelin, Y. Silberberge J. Opt. Soc. Am., B 15 (1998) 1615 From L Serafini - INFN 2nd ORION Workshop - SLAC - Feb. 19th, 2003

Collinear Acousto-Optic modulator (AOM)

F. Verluise *et* al. Arbitrary dispersion control of ultrashort optical pulses with acoustic waves, J. Opt. Soc. Am. B/Vol. 17, No 1/January 2000

G. Suberlucq

Study supported by E.U. inside CARE - JRA - PHIN

Guns

	high intensity, high electric field		RF gun
Unpa	High mean current	>	SRF gun
Unpolarized	Very good vacuum, low electric field	>	DC gun
ized e-	Medium I, medium electric field	>	PWT Under dev.
	Very high electric field (GV/m)	→	Pulsed DC gun Under dev.
Polarizec e ⁻	Low electric field	→	DC gun
zed	Medium I, medium electric field	→	PWT Under dev.

CTF2 drive beam RF gun

RF gun optimized for high charge and high stored energy to minimize transient beam loading. Successfully operated since 1996 until 2002

- 100-110 MV/m operational field at the cathode
- 16 MW input power at 100 MV/m
- Beam energy 7 MeV at 100 MV/m
- Maximum produced charge : 750 nC in 48 pulses
- Pulse width 10 ps FWHM
- Maximum single pulse charge : 100 nC
- Used photocathodes : Cs₂Te, Rb₂Te, Mg, Cu, Al CLIC meeting 28/10/05

RF gun desorption

- Gun desorption is a potentially serious problem for high charge production
- Special attention must be paid to the pumping speed
- Low desorption material must be used

G. Suberlucq

Superconducting RF gun (1)

T. Srinivasan-Rao et al. PAC 2003 Q. Zaho et al. PAC 2003

Superconducting RF gun under Development at BNL $\frac{1}{2}$ cell Niobium cavity , 1.3 GHz E_{max} = 45 MV/m Niobium cath. QE ~ 5.10⁻⁵ at 262 nm with laser cleaning.

For high mean current, the requested laser power is too large : P_L = 95 W / mA

J. Teichert et al. , SRF 2003, Lübeck

Radiation source ELBE

Superconducting RF gun at Rossendorf $\frac{1}{2}$ cell Niobium cavity , 1.3 GHz Tesla geometry Normal-conducting Cs_2 Te photocath. at LN₂ temperature and thermally insulated. Illuminated with 1 W laser at 262 nm

Superconducting RF gun (2)

74R

1. 3 GHz, 10 kW					
optimized half c	ell & 3 TESLA				
E _{z,max} = 50 MV/m	n (T cells)				
= 33 MV/m (1/2 cell)					
77 pC 1 nC					
I _{av} = 1 mA					
E = 9.5 MeV					
0.5 mm mrad 2.5 mm mrad					

- Project under study
- 3½-cell niobium cavity
- Will be operated at 2 K
- Cs₂Te cath. @ LN₂ temp.
 thermally insulated
- Expected QE ~ 5 %

G. Suberlucq

Study supported by E.U. inside CARE - JRA - PHIN

DC guns

Advantages

- Very good vacuum : 10⁻¹² mbar range
- Very low dark current :
 ~ 2 pA/cm² @ 30 MV/m
- High mean current

Disadvantages

- Limited current density :
 J = perv.U^{1.5} ~ 200 A/cm²
- Limited electric field :
 E ≤ 30 MV/m
- Limited potential :
 U ≤ 500 kV

For the present time mandatory for GaAs photocathode applications

Other guns

Plane Wave Transformer RF gun

Large vacuum conductance and moderate electric field

THE UCLA PEGASUS PWT S-band gun

60 cm total length Tank diam. : 12 cm 11 cells

Disk diam. : 4.2 cm

E_{peak} : 60 MV/m **Energy : 12 - 18 MeV** $Emittance_N$: 4 mm.mrad (rms) Charge : 1 nC ; Bunch length : 1 - 10 ps

G. Travish et al. PAC 2003

Pulsed DC + RF gun

Alpha-X project DC/RF photo-injector Strathclyde university and Eindhoven University of Technology

 $U_{DC} = 2 MV$; 1 ns E_{peak-DC} : 1 GV/m ; Gap : 2 mm S-band RF gun ; 100 MV/m Output Energy : 10 MeV $Emittance_N$: 1. π .mm.mrad Charge : 100 pC Bunch length : 50 - 200 fs Peak current : 1 kA M.J. de Loos et al. EPAC 2002 http://phys.strath.aq.ok/alphanx/index.ohtm5

CTF3 Drive Beam photo-injector

Design & construction supported by E.U. inside CARE - JRA - PHIN

G. Suberlucq

Laser layout

Will be presented in details during the next CTF3 collaboration meeting

G. Suberlucq

CTF3 RF gun design

Four new improvements: Four new improvements: Elliptical iris \rightarrow reduces the surface electric field Race track coupler \rightarrow Gives better field symmetry NEG & Ion pumping \rightarrow Give better vacuum Solenoids around the gun \rightarrow Give lower emittances 6. Suberlucg

- RF frequency (GHZ) 2.99855
 - RF power (MW) 30
- Acc. electric field (MV/m) 85
 - Beam energy (MeV) 5.6
 - Beam current (A) 3.5 5
 - Charge/bunch (nC) 2.33
 - Bunch length (ps) 10
 - Energy spread (%) < 2
 - Normalized emittance < 25 (π .mm.mrad)
 - Number of pulses ~ 2332
 - Pulse train duration (µs) 1.548
 - Coupling factor (β) 2.9
- Vacuum pressure (mbar) 2.10⁻¹⁰
 - **Repetition rate (Hz)** 50

G. Bienvenu, R.Roux, *et al,* LAL-IN2P3 - Orsay

RF gun layout

Will be presented in details during the next CTF3 collaboration meeting

G. Suberlucq

Photocathodes

Re-use of the former CTF2 equipment :

- Cs-Te photocathodes produced with an upgraded version of the present co-evaporation system
- Same Transport Carrier (TC)
- Same Manipulator of Photo Cathode (MPC) attached to the gun

Will be presented in details during the next CTF3 collaboration meeting

CLEX Probe beam photo-injector

"Light" version

- Reduced frequency in the burst : 1.5 GHz
- Reduced charge per micropulse ~ 0.2 nC

- Re-use of the preparation chamber attached to the former CTF2 Probe beam RF gun.
 Not TC nor MPC
 - Substantial simplification and economy in the laser system.

Timing Drive - Probe beam

	First pulse of the Drive beam				
	Laser-room 🗲 DB gun		15	m	0.05 μs
	Photo-injector → Delay L	оор	85	m	0.2833 μs
	Delay Loop		42	m	0.14 μs
	TL Delay Loop → Comb.	Ring	30	m	0.1 μs
	Combiner Ring		84	m	0.28 μs
	TL Comb. ring → Probe E	Beam	48	m	0.16 μs
	Total with 1 DL and 4.5 C	. Ring	598	m	1.9933 μs
	Macro pulse length				0.14 μs
	Filling time of PETS+Acc.				0.02 μs
	TOTAL time				2.1533 μs
	Pro	obe Beam			
Las	er-room 🗲 PB gun		75 m		0.25 μs
PB	macro-pulse length				0.021312 μs
TO	TAL time				0.271312 μs
Cor	וע. 1.5 GHz to 3 GHz				0.021312 μs

CLIC meeting 28/10/05

G. Suberlucq

Probe beam preparation chamber

Photocathode developments

Co-evaporation process

Stochiometric ratio monitored with two different ways :

- Separate thickness measurement with microbalances
- Mass spectrometry

Photocathode poisoning study : mass spectrometry

Alkali-antimonide photocathodes

study supported by E.U. inside CARE - JRA - PHIN

Co-evaporation process

Evaporator prototypes allowing the monitoring of the evaporation rates

Every microbalance sees only a single product, while the cathode receives the 2 homogenously.

G. Suberlucq

Co-evaporation process Mass spectrometry I

Ion current of the metallic vapor ∞ evaporation rate

"Closed loop multi source evaporation rate control with a quadrupole mass spectrometer in an ultra high vacuum system", K. Wellerdieck et all.

Mass	Te (%)	Cs (%)
133		100
130	34.5	
128	31.8	
126	18.7	
125	7	

Thickness calibration program is current

Mass spectrometer upgraded to be able to scan masses up to 200

Mass spectrum of Arsenic evaporation

Photocathode poisoning study

Evolution of the vacuum in the preparation chamber

Species	Cs-Te (L)	Cs-Te P (max) mbar	Cs-K-Sb (L)	Cs-K-Sb P (max) mbar
H ₂ O	?	?	?	?
O ₂	15	6x10-12	0.1	4×10-14
	300	1×10 ⁻¹⁰		
CO2	1100	4×10 ⁻¹⁰	1	4 ×10 ⁻¹³

- $L = Langmuir, 1 L = 1.33 \times 10^{-6} mbar.s$
- P (max) = absolute partial pressure to get QE_{max}/e after 1000 hours

- Calibration of species is achieved excepted for water vapor (soon)
- Compatibility with TS/MME for XPS analysis is current (vacuum transportation).
- Species analysis during electron production in DC and RF guns are foreseen.
- Study of water contamination
- Study of contamination by ion pump
- Effect of the stoichiometric ratio on the surface passivation
- Effect of the substratum on the contamination process

Alkali-antimonide photocathodes

QE_(GREEN) ~ QE_(UV)/8 QE_(GREEN) ≥ 0.4 % to produce the requested DB charge with the same IR power.

Two tests are foreseen

Co-evaporation process with a slight cesium deficit to improve the lifetime and the robustness at high electric field Cathode/gun separate vacuum like SEE proposal from BNL

- Electron transparency of the window have to be checked
- Compatibility with the RF and high electric field should be demonstrated

Informal collaboration with CEA-SP2A

Ga-As photocathodes for polarized electron production

Today performances not directly compatible with CLIC specifications.

Don't forget

A l'occasion de mon départ à la retraite, j'ai le plaisir de vous inviter à venir boire le verre de l'amitié

le lundi 31 octobre à 16h30 au "Glass Box" du restaurant n°1

Guy Suberlucq