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Motivation

In CLIC remaining misalignments after prealignment cause
unacceptable emittance growth.

Beam-based alignment methods such as one-to-one correction,
Dispersion Free Steering and Ballistic Alignment are not enough
to achieve acceptable emittance growth.

Emittance tuning bumps have to be used to reduce the remaining
emittance growth

Potential problems for the CLIC bump implementation include:
finite mover stepsize, crosstalk between bumps and limited range
for structure displacements.

A general method for bump implementation has been developed.

A fast routine for bump tuning has been implemented.
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Prealignment and Beam-Based Alignment

Prealignment is assumed to be done
with precision according to the CLIC
yellow report.

PLACET used to create 100 machines
(seeds) with elements scattered
according to a Gaussian distribution.

Then one-to-one correction and
Dispersion Free Steering is used for
further alignment.

Finally structures are aligned to the
beam (with a finite precision.)

Element σ

Quads 50 µm
Acc. struct. 10 µm
Acc. struct.
realign.

10 µm

Acc. struct.
vert. angle

10 µ

Bpms 10 µm
Bpm res. 0.1 µm
Bpm scale
error

10%
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Beam-Based Alignment Performance
Using only 121 correction

Far above the emittance growth target of 5nm.
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Beam-based Alignment Performance
Using 121 and DFS

Better, but far from 5nm.
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Beam-based alignment performance
Using 121, DFS and aligning structures

Even better. At the end of the linac emittance growth is 23.8nm.
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Emittance Tuning Bumps
General Description

Consist of tuning knobs and measurement station.

The term tuning knob is quite general. In this case a knob
corresponds to displacement of one or several structures or quads.

For CLIC main contribution to remaining emittance growth after
beam-based alignment is wakefields from misaligned structures.

The idea is to use vertical structure displacements to give rise to
wakefield kicks that cancel the unwanted wakefield kicks.
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Emittance Tuning Bumps
Measurement station 1

Previous studies used local emittance measurements.

Each knob corresponded to a displacement of one single structure.
No iterations are needed if one knob after the other (from the
beginning to the end) is corrected.
Problem is that local emittance minima do not guarantee
minimised emittance at the end of the linac.
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Emittance Tuning Bumps
Measurement station 2

In this case the measurement station measures emittance at the
end of the linac.

More powerful than local measurements since the most relevant
value is measured.
More complex since knobs in general become dependent and the
crosstalk makes it necessary to iterate the tuning procedure.

Simulations with promising results have also been carried out
where two laserwires separated by a phase advance of 90◦ were
used to get a tuning signal. The laserwires were assumed to have
gaussian transverse profile of the same size as a perfect target
beam, thereby measuring the profile of the studied beam weighted
with a gaussian distribution representing the target beam size.

See for example: P. Eliasson, D. Schulte, “Luminosity Tuning
Bumps in the CLIC Main Linac”, EUROTeV-Report-2005-007-1,
2005
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Emittance Tuning Bumps
Optimisation procedure

Knobs are tuned by testing different knob settings and recording
the measurement station readings. Optimum knob setting is
determined with a quadratic fit.

All knobs are tuned one by one. This procedure in general has to
be iterated.
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Basic Tuning Bumps Performance

10 knobs each corresponding
to a vertical displacement of
one single structures.

Structures are arranged in
pairs (the structures of a pair
being positioned after 2
consecutive focusing
quadrupoles). Pairs are
equidistant in terms of
number of quadrupoles.
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Using these 10 knobs the emittance growth can be reduced to
acceptable levels (∆εy ≈ 0.9nm).

Observe that the final emittance growth these 10 structures is
similar to using 20 structures and local emittance measurements.
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Basic Tuning Bumps Performance
Potential problems 1

Potential problems:

Unacceptably large structure displacements necessary.
Convergence: many iterations needed to reach minimum (due to
“crosstalk” between the knobs). With only 10 knobs this is not a
big problem.
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Basic Tuning Bumps Performance
Potential problems 2

Potential problems:

The large structure displacements can be reduced by using more
structures (40 in this case).
Each knob is now controlling a group of four structures all close
to one focusing quadrupole.
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Convergence and degrees of freedom
Vector representation 1

Our system is linear as long as the knobs correspond to structure
displacements.

For a given seed the final beam after BBA can be represented by
a vector

si = (y1
i , y2

i , . . . , yp
i , βy

′1
i , βy

′2
i , . . . , βy

′p
i ) (1)

And each knob can be represented by

ki = (∆y1
i ,∆y2

i , . . . ,∆yp
i , β∆y

′1
i , β∆y

′2
i , . . . , β∆y

′p
i ) (2)

In other words si contains the p particle positions and p particle
angles at the end of the linac. Similarly ki contains changes in
particle positions and angles for a unit change of knob i .

We will as an example use the 662 knob vectors representing each
structure immediately following a focusing quadrupole). We also
produce 100 seeds corrected by BBA.

In our case, vectors are 294-dimensional (the beams used during
simulations consisted of np = 147 macroparticles.
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Convergence and degrees of freedom
Vector representation 2

The vectors can be depicted by 2D-plots. To the left s1. To the
right k40 and k662
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To minimise the emittance we should try to turn the left plot into
a straight line by using the knobs ki
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Convergence and degrees of freedom
Vector representation 3

The 100 seed vectors si span a subspace of the 294-dimensional
space. If they are linearly independent this subspace is of
dimension 100.

The 662 knob vectors are of course not linearly independent

If the knobvectors span the subspace of the 100 seed vectors,
knob settings xi exist such that

si −Kxi = 0, ∀i (3)
where

K = (k1, k2, . . . , k662) (4)
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Singular Value Decomposition (SVD)

The 100 seed vectors point in 100 independent directions. Only a
few of these are of importance though.

This can be shown in a number of ways. Easiest might be to
study the singular values of the matrix

S = (s1, s2, . . . , s100) (5)

The SVD algorithm decomposes the matrix S into the product

S = UsWsV
T
s (6)

Here Us is an orthonormal matrix spanning the same space as S.
Ws is a diagonal matrix with the singular values (importance of
directions) of S in decreasing order in the diagonal. VT

s is a
square orthonormal matrix
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Singular Value Decomposition

The singular values of S decrease rapidly.
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If we truncate Ws by setting the n diagonal elements wi for which
wi < 0.01w1 (or some other truncation limit) to wi = 0 we obtain
the matrix

S̃ ≈ UsW̃sV
T
s (7)

S̃ is a good approximation to S. Consequently we can use n of
the columns of Us to span the same space as S.
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Singular Value Decomposition

Even though the seed vectors span a 100-dimensional space, 9
knobs might be sufficient to correct all 100 machines (truncation
limit=1%)

It is unlikely that a larger set of machines would be more difficult
to correct. The plots below show the development of singular
values as one seed vector after the other is added.
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Singular Value Decomposition

SVD can also be used to study the knob vector space.

K = UkWkV
T
k (8)

where

K = (k1, k2, . . . , k662) (9)

The same arguments as before show that the 662 knob vectors
only have 16 relevant directions (truncation limit = 1%)
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Orthogonal knobs
Construction

Observe that Uk gives an orthonormal base for the knob vector
space. In particular its first 16 columns span the 16-dimensional
subspace mentioned above.

Eq. 8 may be rewritten as

Uk = KVW−1
k (10)

First 16 columns of VW−1
k describe the linear combinations of K

which form an orthonormal base for the 16-dimensional subspace.

We have thus managed to construct 16 orthogonal knobs, each
corresponding to a pattern of displacements of all 662 structures.
Do they work?
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Orthogonal knobs
Performance

Emittance redcution is excellent with 16 knobs

Faster convergence with 10, slightly worse final emittance.

In principle 2 iterations enough

What about structure displacements for optimum knob settings?
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Structure displacements

Structure displacements are not too far from being acceptable.
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Orthogonal knobs
10, 40 structures

As another example of the orthogonalisation of knobs we look at
the 10 and 40 structures again. Fewer structures means:

Fewer movers. A limited number of structures could be put on
special movers that are faster and more precise than the
prealignment movers.
Larger displacements needed.

Orthogonalisation of the knob vectors as before.

In both cases a significant improvement of the convergence is
obtained. To the left 40 structures, to the right 10.
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Orthogonal knobs
Another example

If 40 structures each controlled by its own knob for some reason
would be used for tuning the convergence would be terrible.

As we concluded earlier no more than 10-16 knobs makes sense.

The SVD strategy can be used to reduce the number of knobs to
10 orthogonal ones.

Convergence is improved a lot.
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Orthogonal knobs
One last example

12 knobs constructed using all focusing quadrupoles in CLIC.

Result is not as good as with accelerating structures.

Difficult to cancel wakefields without introducing dispersion with
the quads.

Besides mover sensitivity will be an issue, see two last slides.
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Comment on the “tracking” procedure

Previous simulations of the bumps were relatively time consuming
and . PLACET was used to track the beam through the whole
line for every single knobsetting tested.

Since I implemented a new PLACET routine which can be used
for linear knobs the time consumption for a certain simulation was
reduced from a few hours to a few minutes.

The routine simply stores the seed vectors and calculates the
knob vectors by normal PLACET tracking. When these vectors
have been calculated no more tracking is needed until the
quadratic fit routine has calculated the optimal knob settings.

For a person who wants to study the effect of different BBA
methods for CLIC the use of tuning bumps is of importance to
get the final picture. A fast and easy way to simulate the tuning
bumps is very important. The new routines also simplifies life a lot
for someone who wants to study different tuning bump strategies.
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Final comments on CLIC tuning bumps

Already the 10 basic knobs gave very good emittance reduction.
10 knobs might be just enough since the seed space had 9 degrees
of freedom.
Very large structure displacements necessary though.

With 40 structures in groups of 4 controlled by 10 orthogonal
knobs, we got

Lower final emittance
Same convergence speed.
Reduced structure displacements.
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Some comments on ILC

A few slides to show that this kind of treatment of the
implementation of bumps is also very useful for ILC.

With very similar methods as described earlier a set of
quadrupoles (structures are not foreseen to be on movers) have
been used to create knobs. Problem is that by moving a
quadrupole both dispersion and wakefields are introduced.

The knobs were constructed as linear combinations of the
quadrupole knob vectors in such a way that they were identical to
the knob vectors of structure displacements and also to the knob
vectors of artificial dispersion bumps.

The use of the artificial dispersion bumps and the bumps based
on structure displacements had already been shown to be very
efficient.
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Some comments on ILC

The right linear combination of quadrupole vectors has almost
exactly the same effect on yi and y ′i as an artificial dispersion
bump positioned at the end of the linac.
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Emittance growth histogram

The realistic bumps give almost exactly the same final emittance
as the artificial ones. For ILC the target for emittance growth is
maximum 10% of all machines above 10nm.
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Tuning bumps convergence speed

Emittance growth vs optimisation steps for the different bumps.
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Some comments on ILC

If all quadrupoles are used to construct knobs with the same
effect as the artificial ones, the tuning gets sensitive to the mover
step size. This problem is much less severe in case a few “good”
quadrupoles are chosen.
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Some more comments on ILC

The step size problem is similar to what is experienced when
quadrupoles are used as feedback correctors.

In that case the MICADO algorithm is used to choose the
“optimal” subset of quads. These quads perform as well as all
together, but the system becomes less sensitive to mover step size.

A few different approaches to find a subset of quads for the
bumps have been tested

“MICADO”: The single quad that does the job best is chosen and
moved to its optimal position. Then one by one quad that best
optimises the problem is chosen in the same way.
Reoptimised “MICADO”: Similar, but when each new quad is
being tested both this quad and the previously chosen are
optimised.
LA solution: The quad vector with the longest projection on the
seed or knob space is chosen and then one by one quad
orthogonal to the previous ones is selected in the same way.

Especially the second approach was efficient and clearly improved
the results compared to using equidistant quads.
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