

From a visit to KEK during December 2006

Contents

- ATF project:
 - complex
 - achievements
 - goals
 - problems
- ATF2 project:
 - schedule
 - complex
 - goals
 - problems

ATF complex

Achievements: Emittance

Minimum normalized vertical emittance = $0.01 \mu m$

Achievements: Instrumentation

Demonstration of operational 50nm resolution BPMs

Achievements: Instrumentation II

- ATF 'in the ring' laserwire is a high resolution beam size monitor → 1% resolution @ 5um
- Fast (3ns) kicker (0.6mrad) for ILC Damping ring

IP-BPM Demonstrate 2nm resolution

Fast Feedback system: 23ns latency

Beam dynamics: Fast ion instability, impedance measurement, microwave instability, etc.

ATF problems I

Extraction line emittance larger than ring emittance !!Coupling? Non-linear aberrations?

ATF problems II

-Are resonances a problem in the Damping ring?

-Experiments to measure resonance driving terms have been performed by: R. Tomas, K. Kubo,
S. Kuroda, T. Naito, T. Okugi, J. Urakawa and
F. Zimmermann.

ATF problems II

First measurement of the resonance (3,0) at two BPMs in ATFDR. Reasonable agreement with model but lack of long. information.

ATF problems II

Attempt to measure resonance (1,2) failed because of not enough kick strength in both planes (simultaneously). Vertical plane remains not probed.

ATF problems III: Energy oscillations -12-06niection. 1200 $1200 \\ 1000$ I=0.65 1000 l=1.25 800 800 x[µm] [mu]x 600 600 400400 200 200 -20Ŏ -400 -20Ŏ -400 12001200 l=1.00 I=0.5 1000 1000 800 800 x[µm] 600[mu]x 600400 200 400 200 -20Ŏ -400 -20Ō -4001200 1200 I=0.7 I = 0.321000 1000 800 800 x[µm] 600 600 [mul]x 400 400 200 200 0 O -200 -200 -400 -400 1000 2000 4000 3000 1000 2000 3000 0 0 <u>Turn nu**mbe**r</u> <u>Turn nu**mbe**r</u>

Everlasting energy oscillations after injection

ATF - ATF2 schedule

ATF2 layout

ATF2 Goals

- Experimental demonstration of the Final Focus System
- Achievement of 37nm vertical IP spot size
- Experimental demonstration or test of other aspects of Linear Colliders:
 - Collimation and wakefields
 - Correction of aberrations (2nd order dispersion, etc.)
 - Instrumentation

ATF2 problems: Achieving 37nm

Shintake monitor only measures below 100nm (now 300nm)

- 54% seeds
 converge <-
 39nm.
- 30% seeds
 never get to
 <100nm.

G. White

Alignment and tunning do not guarantee $\sigma y < 100$ nm

New tuning simulations required to prove performance

ATF2: Octupole Tail Folding?

Permanent octupole magnets have been proposed to test octupole tail folding.

Y. Iwashita

Principle of octupole tail folding

Requirements for efficient halo folding:
-Low halo divergence (large beta)
-Octupole doublet placed after collimators
-Octupole doublet placed in front of a quadrupole

ATF2 Final Focus optics

No good location for vertical Octupole Doublet

Folding the halo from 5 to 2.5σ is possible, but...

ATF2: Emittance blow up due to octupoles

Octupole tail folding in ATF2 needs either larger collimator gaps or different collimator location (for the vertical case).

ATF2: Magnetic field stability?

magnetic field stability

Masayuki Kumada, NIRS

an amplitude of a magnetic field of iron core electric magnet changes even under constant current. Its underling physics still remains *puzzle*.

The observed temperature coefficient of the iron core electromagnet is about +14 ppm/degree. It is positive and cannot be explained by the standard Bloch theory.

CLIC Table

4. Discussion of the use of the table for ATF2

✓ Low frequency vibrations:		0.1Hz	-	1Hz
\rightarrow Expected vibrations in the vertical direction:		300nm	\rightarrow	80nm
Table (Vertical direction)	Passive	Active		
Amplification	1	1.5		
Coherence Table/Floor	0.9	0.9		
 ✓ Medium frequency vibrations: 1Hz - 20Hz → Expected vibrations in the vertical direction: 80nm → 2nm 				
Table (Vertical direction)	Passive	Active		
Amplification	1.5	0.1		
Coherence Table/Floor	0.9	0.3		
 ➤ Loss of coherence in the active mode → Even if FD motion very small, relative motion between FD and Shintake big ■ Passive table better 				

Benoit Bolzon

ATF2: Coupling & Dispersion problem

Problem: Skew quadrupolar errors in this area cause vertical dispersion

ATF2: Coupling & Dispersion problem

This vertical dispersion can be corrected in two ways:

- With orbit correctors: Large orbit bumps are required, which at the sextupoles produce large betatron coupling (T. Okugi).
- With skew quadrupoles: These certainly produce large <u>betatron coupling</u> (M. Woodley).

No matter what large <u>coupling</u> needs to be corrected

Coupling & dispersion problem: T. Okugi

In Okugi's approach existing skew quadrupoles are too weak. Solution: new stronger skew quads?

Coupling & dispersion problem: Woodley

Two extra skew quadrupoles in the inflector area are enough to cancel vertical dispersion originated in this area. Coupling correction is easier than in Okugi's approach. However: Residual vert. dispersion cannot be handled.

Coupling & dispersion problem: me

4 new dispersion + 4 betatron skew quads cancel any coupling and any dispersion. However: Difficult correction procedure and we still need 4 new skew quads...

Coupling & dispersion: conclusion

- If residual dispersion is below 5mm, M. Woodley's approach is the best.
- If residual dispersion is above 5mm, there is no easy solution.

Summary & Outlook

- ATF and ATF2 are the largest facilities built exclusively to test Linear Collider's concepts.
- Very open international collaboration:
 Call for new R&D proposals at ATF (until May)
- Very interesting open problems

Links

ATF collaboration web page:

http://atf.kek.jp/collab

ATF2 third project meeting:

http://ilcagenda.linearcollider.org/conferenceDisplay.py?confId=1295