Main Linac Design and Alignment

D. Schulte

Lots of contributions from G. Riddone, H. Mainaud-Durand and A. Latina

Introduction

- The main linac is an important driver of the structure design
 - the wakefields can render the beam instable
 - they introduce energy spread
- The linac beam dynamics limits the bunch charge and beam current and consequently the efficieny and the luminosity
- Challenges for the linac design are to
 - ensure beam stability
 - limit emittance growth
- Will introduce lattice design for new CLIC parameters (not finished)
 - structure design from A. Grudiev
- Currently want to verify that there is a solution
 - next step will be to find best solution

Low Emittance Transport Challenges

• Static imperfections

errors of reference line, elements to reference line, elements...

excellent pre-alignment, lattice design, beam-based alignment, beambased tuning

• Dynamic imperfections

element jitter, RF jitter, ground motion, beam jitter, electronic noise, . . .

lattice design, BNS damping, component stabilisation, feedback, retuning, re-alignment

- Combination of dynamic and static imperfections can be severe
- Lattice design needs to balance dynamic and static effects

Lattice Design Considerations

- Linac lattice is a trade-off
- strong focusing
 - small sensitivity to wakefields
 - dispersive effects important
- large energy spread
 - beam is more stable
 - dispersive effects are increased
- First need to consider beam stability
 ⇒ look at allowed energy spread

- weak focusing
 - high sensitivity to wakefields
 - dispersive effects smaller
- small energy spread
 - beam is less stable
 - dispersive effects are reduced

Beam Stability

- Transverse wakes act as defocusing force on tail
 - \Rightarrow beam jitter is exponentially amplified
- BNS damping prevents this growth
 - manipulate RF
 phases to have
 energy spread
 - take spread out at end

Emittance Preservation

- $\epsilon_x \gg \epsilon_y \Rightarrow$ consider only ϵ_y
- Current main linac target: $\Delta \epsilon_y \leq 5 \,\mathrm{nm}$
 - inital $\epsilon_y \leq 5 \,\mathrm{nm}$
 - may need review to allow for large growth in RTML
- Budget is shared with other effects

 \Rightarrow assume $2.5\,\mathrm{nm}$

Large spread in emittance growth as function of initial distribution

 \Rightarrow need to define probability level (we require 90%)

- Emittance growth is dominated by wakefields
 - even dispersive growth since BNS damping is used

$$\Delta \epsilon_y \propto (W_\perp N \sigma_z \Delta y)^2$$

- W_{\perp} large a (iris radius)
- N- trivial, but $\eta\propto N$
- σ_z large a, small N

Beam Loading and Bunch Length

- Aim for shortest possible bunch (wakefields)
- Energy spread into the beam delivery system should be limited to about 1% full width or 0.35% rms
- Multi-bunch beam loading compensated by RF
- Single bunch longitudinal wakefield needs to be compensated
 - \Rightarrow accelerate off-crest

- \bullet Limit around average $\Delta\Phi \leq 12^\circ$
 - $\Rightarrow \sigma_z = 65 \,\mu\mathrm{m}$ for $N = 5.2 \times 10$

Energy Spread

- Three regions
 - generate
 - maintain
 - compress
- Configurations are named according to RF phase in section 2
- Trade-off in fixed lattice
 - large energy spread is more stable
 - small energy spread is better for alignment

Lattice Design Strategy

- Chose a strength that ensures beam stability (same as in old lattice)
- At higher energies beam is less sensitive to wakefields
 - \Rightarrow increase beta-function along machine

 $\beta \propto \sqrt{E}, \ \Delta \phi = \text{const}$

- In practice sectors with constant FODO cells are used
- Scaling ensures roughly constant fill factor
 - magnet strength (and length) is proportional to $E/\beta \propto \sqrt(E)$
 - spacing is proportional to $\beta \propto \sqrt(E)$
- Phase advance in cells is chosen as compromise of fill factor and stability with respect to ground motion
- Review will be needed
 - we might be able to reduce the focusing strength a bit
 - the phase advance optimum might have moved a bit

Module Layout

- The articulation point and the quadrupoles can be moved
- Maybe need sheer point before quadrupole

Lattice Design

- Preliminary lattice
 - quadrupoles need to be confirmed
 - some optimisations remain to be done
- Total length 20867.6mfill factor 78.6%
- 12 different sectors used
- Matching between sectors using 5 quadrupoles to allow for some energy bandwidth

Beam Stability

- The beam is stable if the energy spread is large enough
 - at $\Phi_2 = 8^\circ$ the stability is marginal
- Seems acceptable but cannot relax focusing very much
 - \Rightarrow have to live with it

Single Bunch Jitter Tolerances

- Assumed no correction
 - \Rightarrow multi-pulse emittance is important
- \bullet Value is given for $0.1\,\mathrm{nm}$ emittance growth
 - quadrupole position: $0.8\,\mathrm{nm}$
 - structure position: $0.7\,\mu m$
 - structure angle: $0.55 \,\mu$ radian
- \Rightarrow Tolerances are very tight
 - in particular for quadrupole

Different Error Contributions

- The main linac can be treated as a linear system
- For the same beam-based alignment method
 - \Rightarrow emittance growth scales as the square of the errors
 - \Rightarrow emittance growth for different errors can be calculated seperately (in most cases)
- But the choice of weights for DFS affects the results
 - large BPM position error pushes towards large weights
 - bad BPM resolution pushes towards small weights
 - \Rightarrow compromise
 - \Rightarrow cannot specify a tolerance easily, depends on other errors

Error Sources

- Most important are
 - BPM position errors
 - BPM resolution
 - structure to beam misalignment
- BPM position errors and resolution determine the final dispersion left in the beam
- Structure offsets determine the final wakefield effect in the beam
 - if the wakefields are identical in two consecutive structures, the mean offsets is important
 - if wakefields are different, scattering of structures around mean value matters
 - should not matter for short-range wakefields
 - could matter for long-range wakefields

Beam-Based Correction Strategy

- Make beam pass linac
 - one-to-one correction
- Remove dispersion
 - dispersion free steering
 - ballistic alignment
- Remove wakefield effects
 - accelerating structure alignment
 - emittance tuning bumps
- Tune luminosity
 - tuning knobs
- currently noise during correction is only taken into account in simplified way (e.g. beam jitter)

Simulation Procedure and Benchmarking

- All simulation studies are performed with PLACET
 - based on 100 different machines
- Benchmarking of tracking codes is essential
- Comparisons performed in ILC framework
 - tracking with errors
 - alignment methods

Misalignment Model: Module

- Sensors connect beam line to reference system
- Excellent prealignment of elements on the girders

Misalignment Model: Flow Diagram

Misalignment Model: Simplified Version

- In PLACET consider Three types of misalignment
 - articulation point (cradle)
 - articulation point to girder
 - girder to structure centre
- Error of reference line may contain systematics

Accelerating Structure Alignment

PRE-ALIGNMENT

Ref.	1	Inherent accuracy of reference	10 µm	1σ
Ref. to	2	Sensor accuracy and electronics (reading error, noise,)	5 μm	1 σ
cradle	3	Link sensor/cradle (supporting plates, interchangeability)	5 µm	1 σ
Cradle to girder	4	Link cradle/girder	5 μm	1σ
Girder to AS	5a 5b	Link girder/acc. structure Inherent precision of structure	5 µm	1 σ
		TOTAL	14 µm	1σ
		Tolerance	40 µm	3σ

BEAM-BASED ALIGNMENT

6) relative position of structure and BPM reading

5μm 1σ

Quadrupole Alignment

PRE-ALIGNMENT

Ref.	1	Inherent accuracy of reference	10 µm	1σ
Ref. to cradle	2	Sensor accuracy and electronics (reading error, noise,)	5 µm	1σ
	3	Link sensor/cradle (supporting plates, interchangeability)	5 µm	1σ
Cradle to Q	7a	Link cradle/quadrupole	5 µm	1σ
	7b	Inherent precision of quadrupole	10 µm	1σ
		TOTAL	17 µm	1 σ
		Tolerance	50 µm	3σ

BPM Alignment

PRE-ALIGNMENT

Ref.	1	Inherent accuracy of reference	10 µm	1σ
Ref. to cradle	2	Sensor accuracy and electronics (reading error, noise,)	<mark>5 μm</mark>	1σ
	3	Link sensor/cradle (supporting plates, interchangeability)	5 μm	1σ
Cradle to BPM	8a	Link cradle/quadrupole BPM axis	5 µm	1σ
BPM	8b	Inherent precision of quadrupole BPM axis	5 µm	1σ
	-	TOTAL	14 µm	1σ
		Tolerance	40 µm	3σ

BEAM-BASED ALIGNMENT:

8c) relative position of quadrupole and BPM reading

10 µm

1σ

Assumed Alignment Performance

Element	error	with respect to	alignment		
			NLC	CLIC	
Structure	offset	girder	$25\mu\mathrm{m}$	$7\mu{ m m}$	
Structure	tilts	girder	33μ radian	?(cost)	
Girder	offset	survey line	$50\mu{ m m}$	$9.4(6.2)\mu\mathrm{m}$	
Girder	tilt	survey line	15μ radian	$9.4(6.2)\mu$ radian	
Quadrupole	offset	survey line	$50\mu{ m m}$	$17(13)\mu\mathrm{m}$	
BPM	offset	quadrupole/survey line	$100\mu{ m m}$	$14\mu{ m m}$	
BPM	resolution	BPM center	$0.3\mu{ m m}$	$0.1\mu{ m m}$	
Structure bpm	resolution	wake center	$5\mu{ m m}$	$5\mu{ m m}$	

One-To-One Correction

• The beam is made to pass through the centres of the BPMs

 \Rightarrow The result is very far from the target

Tolerances

Element	error	with respect to	tolerance	
			CLIC	NLC
Structure	offset	beam	$4.3(5.8)\mu{ m m}$	$5.0\mu\mathrm{m}$
Structure	tilt	beam	220μ radian	135μ radian
Quadrupole	offset	straight line		—
Quadrupole	offset jitter	straight line	$13\mathrm{nm}$	—
Quadrupole	roll	axis	$240(240)\mu{ m m}$	280μ radian
BPM	offset	straight line	$0.4(0.44)\mu{ m m}$	$1.3\mu{ m m}$
BPM	resolution	BPM center	$0.4(0.44)\mu{ m m}$	$1.3\mu{ m m}$
Art. point	offset	straight line	$1.7(3)\mu\mathrm{m}$	
End point	offset	Art. point	$2.0(3.8)\mu{ m m}$	

- All tolerances are given after one-to-one steering, except quadrupole jitter
- In brackets low charge version

Ballistic Alignment

- Beamline is divided into bins (12 quadrupoles)
- Quadrupoles in a bin are switched off
- Beam is steered into last BPM of bin
- BPMs are realigned to beam
- Quadrupoles are switched on
- Few-to-few steering is used

Results for Ballistic Alignment

- The result is not satisfactory
- But much better compared to one-to-one
- Previous results showed that the earth magnetic field already has an influence

Dispersion Free Correction

- Basic idea: use different beam energies
- NLC: switch on/off different accelerating structures
- CLIC (ILC): accelerate beams with different gradient and initial energy
- Optimise trajectories for different energies together:

$$S = \sum_{i=1}^{n} \left(w_i(x_{i,1})^2 + \sum_{j=2}^{m} w_{i,j}(x_{i,1} - x_{i,j})^2 \right) + \sum_{k=1}^{l} w'_k(c_k)^2$$

- Last term can be omitted
- Idea is to mimic energy differences that exist in the bunch with different beams

Alignment of Beginning of Main Linac

DFS Results

- Optimum combination of w_1 and w_2 found
- Average emittance growth about is not acceptable

Structure Alignment

- Each structure is equipped with a BPM (RMS position error $5\,\mu m$)
- Up to eight structures are mounted on movable girders
- \Rightarrow Align structures to the beam
 - In the current simulation each structure is moved independently
 - A study had been performed to move the articulation points (N. Leros, D.S.)
 - \Rightarrow small effect if chain is continuous
 - \Rightarrow negligible additional effect if additional articulation point exists at quadrupoles
- \Rightarrow Would like to revisit the problem to get rid of sheer point at quadrupoles

Result for Ballistic Alignment

- Structure alignment is very efficient
 - large misalignments between BPMs and structures existed
 - they are removed by structure alignment
- \Rightarrow The performance is almost satisfactory

DFS Results

DFS Results

- ⇒ With RF alignment we can have more then 90% of the machines below 5nm
- \Rightarrow But not much margin

Tuning Bumps

• Tuning bumps will be used to reduce the wakefield effects the beam accumulates wakefield kicks as

$$F(z) = w_{\perp}(z) \sum_{i=1}^{n} A_i y_i$$

the bump is used to zero the sum

$$F'(z) = w_{\perp}(z) \left(\sum_{i=1}^{n} A_i y_i + A_j \Delta y_j \right)$$

Residual remains

- energy spread in the beam (slight *z*-dependence of A)
- imperfect measurement/correction
- Bumps are simulated by moving a single structure transversely
 - previous studies showed that this is a good enough model (P. Eliasson, D.S.)

Results for DFS

- Bumps are efficient
- Already a single bump (two degrees of freedom) is satisfactory
 - but we would use 3 or 5
- ⇒ Need to optimise taking into account convergence
 - Final average emittance in nm (bumps): 1.6 (0), 0.9 (1), 0.3 (3), 0.18 (5), 0.13 (7)

Dependence on Weigths (Old Parameters)

- For TRC parameters set
- One test beam is used with a different gradient and a different incoming beam energy
- \Rightarrow BPM position errors are less important at large w_1
- \Rightarrow BPM resolution is less important at small w_1
- \Rightarrow Need to find a compromise
- \Rightarrow Cannot give "the" tolerance for one error source

New Parameters

- For new parameters similar dependence is found (as expected)
- can achieve
 - $\Delta \epsilon_y \approx 0.05 0.3 \,\mathrm{nm}$ for BPM misalignments
 - $\Delta \epsilon_y \approx 0.3-0.05 \,\mathrm{nm}$ for BPM resolution

Long Distance Alignment

- In most simulations elements are scattered around a straight line
- In reality, the relative misalignments of different elements depends on their distance
- To be able to simulate this, PLACET can read misalignments from a file
 - simulation of pre-alignment is required
- To illustrate long-wavelength misalignments, simulations have been performed
 - cosine like misalignment used

Results 1

tolerance for $\Delta \epsilon_y$ =1nm [µm]

Results 2

Results 3

tolerance for $\Delta \epsilon_y$ =1nm [µm]

Long-Range Wake Fields

- Wake-fields are know in time or frequency domain
- Time domain is time consuming:

$$F_n = e \sum_{i=1}^n W_{\perp}(z_n - z_i)(x_i q_i)$$

 \Rightarrow use FFT (convolution theorem)

 \Rightarrow or mode model (in linacs often sufficient):

$$W_{\perp}(z) = \sum_{j=0}^{n} a_j \sin\left(\frac{2\pi z}{\lambda_j}\right) \exp\left(-\frac{\pi z}{\lambda_j Q_j}\right)$$

can be evaluated very efficiently

CLIC Longrange Wakefields

- Long-range wakefields are important
- Simulation of emittance growth due to beam jit-ter
 - no energy spread (pessimistic)
- Allowed wake at second bunch is $\approx 4.5 \, \mathrm{kV/pCm^2}$

 \Rightarrow seems acceptable

Static Effects

- If all structures have the same long-range wake, the tuning bumps are curing short- and long-range effects at the same time
 - \Rightarrow simulations indicate small additional effects in other lattices
- For different longrange wakes the compensation is not guaranteed
 - \Rightarrow need to develop a model for long-range wakes with errors
- Wakefield tolerance given is for the wake envelope
 - \Rightarrow spread is wakes should lead to lower average kick
- We could develop special long-range bumps e.g. based on train straightener

Conclusion

- New lattice design is waiting for confirmation of quadrupole lengths
 - final optimisation will be performed once this is done
- Performance corresponds to expected values from scaling
- A model for the alignment has been developed in the module working group
 - needs continuation
 - a complex data transfer between alignment and beam dyanmics is required
- Static tuning study needs to be repeated (in more complete version) for final lattice
- Dynamic effects and feedback need to be included
- Multi-bunch effects need to be treated
- For a number of these studies the strategy is know and needs to be applied
 - in some cases more development remains to be done