

Two Beam Module Design

G. Riddone on behalf of the CLIC Module working group

08.06.2007

Content

- Introduction
- Layout
 - Longitudinal dimensions
 - Transverse dimensions
- System integration
- Alignment tolerances
- Tunnel integration

Mandate

- Develop the general layout, system integration, space hindrance, number of components and their position
- Specify the alignment/supporting system
- Specify the cooling system
- Specify the vacuum system
- Study the tunnel integration
- Identify critical points
- Cost estimate

Activities/Domains

- Layout and integration
- Alignment and supporting system
- Vacuum system
- Cooling system
- Beam instrumentation
- Beam dynamics
- Tunnel integration, transport and handling
- Radiation constraints and safety
- Assembly, installation, maintenance

Members

- Paolo Chiggiato
- Pedro Costa Pinto
- Noel Hilleret
- Raphael Leuxe
- Alexej Grudiev
- Helene Mainaud-Durand
- Bertrand Nicquevert
- Thomas Sahner
- Daniel Schulte
- Igor Syratchev
- Lars Søby
- Mauro Taborelli
- Walter Wuensch
- Carlo Wyss
- Thomas Zickler

TS/MMF TS/MME AT/VAC TS/MME AB/RF TS/SU TS/MME TS/MME AB/ABP AB/RF AB/BI TS/MME AB/RF DSU/HEP

AT/MEL

Vacuum system Vacuum system Vacuum system **Mechanics RF** design Alignment system **Mechanics Mechanics** Beam dynamics **RF** design Beam instrumentation **Mechanics** System integration Tunnel integration, cost estimate Quadrupole design

Layout

- Main input for module length:
 - Accelerating structure length
 - PETS length
- The module length defines the drive beam quadrupole length (+ BPM) and the main beam quadrupole lengths (+BPM)
 - Feasibility of the quadrupoles is then to be verified

SINCE Jan 2007

- 1st Layout @ 12 GHz, 100 MV/m following change of parameters at the end of 2006 (January-April 2007)
- Updated layout from mid of April 2007
 - standard module (from April 2007)
 - special modules: pairs of accelerating structures replaced by quadrupole (from June 2007)

Standard module layout – Jan 2007

Accelerating structures

	1	
Structure	old	new
RF phase advance per cell: $\Delta \varphi$ [°]	120	120
Average iris radius/wavelength: $\langle a \rangle / \lambda$	0.12	0.12
Input/Output iris radii: a _{1,2} [mm]	3.87, 2.13	3.87, 2.13
Input/Output iris thickness: d _{1,2} [mm]	2.66, 0.83	2.66, 0.83
Group velocity: $v_g^{(1,2)}/c$ [%]	2.39, 0.65	2.39, 0.65
N. of reg. cells, str. length: N _c , l [mm]	24, 229	24, 229
Bunch separation: N_s [rf cycles]	7	8
Number of bunches in a train: N_b	265	311
Pulse length, rise time: τ_p , τ_r [ns]	244, 30	297 , 3 0
Input power: P _{in} [MW]	76	69
Max. surface field: E_{surf}^{max} [MV/m]	323	309
Max. temperature rise: ΔT ^{max} [K]	57	60
Efficiency: η [%]	31.0	28.8
Luminosity per bunch X-ing: $L_{b\times}$ [m ⁻²]	2.6×10 ³⁴	2.4×10 ³⁴
Bunch population: N	5.8×10 ⁹	5.2×10 ⁹
Figure of merit: $\eta L_{b\times}/N$ [a.u.]	13.7	13.3

A. Grudiev, 28.03.2007, update 17.04.2007

PETS

PETS slotted configuration bring ~ 30% Wu enchantment.

About 10% can be played back with optimizing the iris profile

Module layouts	#1	#2	#3
Unit length, m Drive beam, GeV Drive beam , A		1.0 2.25 93	
Aperture, mm Length, m Power/PETS,MW Wu/WDS (slotted) Wt (norm./23mm) Q1 (norm./23 mm)	15.7 0.10 79 0.46 3.1 1.65	23 23 160 1.0 1.0 1.0	30.8 56.4 317 1.37 0.42 0.8

Layout #2 is the best compromise in terms of power production, beam stability and cost

I. Syratchev, 17.04.07

Standard Module – Apr 2007

2007.06.08

Longitudinal dimensions and quantities

Longitudinal dimensions and quantities	number	unit length [mm]	total length [mm]
Main linac			
Standard module			
Accelerating structure length including couplers	8	230	
accelerating structure interconnection including cutoff pipe	7	20.0	
inter girder connection	1	30.0	
Total	girder	2010.0	
	filling factor	0.92	

Drive linac			
Standard module			
PETS effective active length	4	231	(6.253x37)
Coupler + matching cell + space to stop the slot	4	88.0	
Interconnection	3	5.0	
PETS effective active length + coupler		319	
PETS effective active length + coupler + interconnection		324	
quadrupole + BPM	2	344	
intergirder PETS /quadrupole interconnection	1	30.0	
Total		2010	

Proposed Main Beam Quadrupole Layout

2.5 GeV nominal beam energy Aperture radius: 13.0 mm Integrated gradient: 14.3 Tm/m Nominal gradient: 67.1 T/m Iron length: 200 mm Magnetic length: 213 mm Total length: 270 mm 390 mm Magnet width: Magnet weight: 180 kg Distance between opposite coils: 118 mm Space available for BPM: 109 mm Number of turns: 128 Air cooling

T. Zickler, 21.05.2007

Module layout – special #1 Single length quadrupole

Value to be confirmed

Module layout – special #2 Double length quadrupole

Value to be confirmed

of special modules 2: 1328 # PETS: 2656 # AS: 5312

Module layout – special #3 Triple length quadrupole

Value to be confirmed

of special modules 3: 948 # PETS: 948 # AS: 1896

Module layout – special #4 Full length quadrupole

Value to be confirmed

of special modules 4: 1448 # PETS: 0 # AS: 0

Longitudinal dimensions and quantities

	Number	Unit length [mm]
Special module (- 2 Acc. Structures) - single length quadrupole		
Accelerating structure length including couplers	6	230
accelerating structure interconnection including cutoff pipe	5	20.0
inter girder connection	1	30.0
Quad + BPM	1	500.0
Total	girder	2010.0
Special module (- 4 Acc. Structures) - double length quadrupole		
Accelerating structure length including couplers	4	230
accelerating structure interconnection including cutoff pipe	3	20.0
inter girder connection	1	30.0
Quad + BPM	1	1000.0
Total	girder	2010.0
Special module (- 6 Acc. Structures) - triple length quadrupole		
Accelerating structure length including couplers	2	230
accelerating structure interconnection including cutoff pipe	1	20.0
inter girder connection	1	30.0
BPM(s) from structure damping waveguides	2	0.0
separate BPMs fixed to accelerating structures	0	0.0
Quad + BPM	1	1500.0
Total	girder	2010.0
Special module (- all Acc. Structures) - full length quadrupole		
Accelerating structure length including couplers	0	230
accelerating structure interconnection including cutoff pipe	0	20.0
inter girder connection	1	30.0
BPM(s) from structure damping waveguides	0	0.0
separate BPMs fixed to accelerating structures	0	0.0
Quad + BPM	1	1980.0
Total	girder	2010.0

Transverse dimensions inside quadrupoles

ran	sverse dimensions inside quadrupoles					
Ma	in linac					
	beam pipe inner radius	2.13	mm	to be confir	med by T	Zickler
	beam pipe thickness including stiffening and pumping if necessary	1	mm	to be confir	med by T.	Zicklei
	radial play for alignment	1.5	mm	to be confir	med by T	Zickle
	quadrupole inner radius	5	mm			
	gradient	216	T/m			
Dri	ve linac					
	beam pipe inner radius	11.5	mm	ler		
	beam pipe thickness	0.5	mm	Zickler n		
	radial play for alignment	1	mm	U U		
	quadrupole inner radius	13	mm	μĒδ		
	Nominal gradient	67.1	T/m	nation T CMVVG 2007		
	Iron length	200.0	mm	confirmation at the CMW 21.05.2007		
	Magnetic length	213.0	mm	confirm at the 21.05.1		
	Total length	270.0	mm	51 at C		

System integration

- Decision to work in parallel to input definition
- Baseline approach:
 - 1. Identification of the requirements for the main components (PETS, acc. structures,...) and systems (cooling, vacuum alignment, beam instrumentation, beam dynamics ...)
 - 2. "quasi-detailed study" for the main components: acc. structures, PETS
 - 3. Space reservation for the main systems: alignment/supporting system, ...
 - 4. Detailed study of each system

System integration

- Main boundary conditions (in addition to input on accelerating structures and PETS)
 - PETS-accelerating structure inter-axis: 750 mm
 - Acc. structures: quadrants
 - Tank for PETS and tank for acc. structures
 - PETS and accelerating structures with common vacuum
 - Separate PETS and accelerating structure girders
 - BPM attached to drive beam quadrupoles
 - Separate BPM and main beam quadrupoles
 - BPM attached to each accelerating structures

Standard module

Standard module

Alignment tolerances

- Dedicated study in collaboration with D. Schulte and H. Mainaud-Durand
- Alignment error identification:
 - Mechanical errors
 - Positioning errors
- Tolerances for:
 - Pre-alignment: before pilot beam
 - Alignment: beam-based alignment
- Main cases:
 - Accelerating structures (1) and PETS (4)
 - Main linac quadrupoles (2)
 - Main linac quadrupole BPM (3)

Definitions for the errors

- Identification of the r.m.s value for each independent and random error "E"
- The quadratic sum of all the individual errors (r.m.s) gives the r.m.s value of the process
- The tolerance (maximum acceptable error) of the process is <u>3 times</u> the r.m.s error of the process

Module layout with sensor position

2007.06.08

Pre-alignment and beam based alignment process

Pre-alignment and beam based alignment process

Tolerance for accelerating structure

PRE-ALIGNMENT

Ref.	1	Inherent accuracy of reference (link between two adjacent girders)	10 µm	1σ
Ref. to	2	Link "local" reference/sensor	5 µm	1σ
cradle	3	Link sensor/cradle	5 µm	1σ
Cradle to girder	4	Link cradle/girder	5 µm	1σ
Girder to AS	5a 5b	Link girder/acc. structure Inherent precision of structure	5 µm	1σ
		TOTAL	14 μm	1σ
		Tolerance	40 µm	3σ

BEAM-BASED ALIGNMENT

6) relative position of structure and BPM reading

Detailed error description

Case 1: accelerating structure

Link	Errors description	Origin
E1*: Link "local" reference / straight	Error on the "reconstruction" of the straight line using overlapping	Positioning
reference line	references	
	 Link between the 2 reference points of the straight line and the local references. 	
E2: Link sensor / "local" reference	Error on the reference surface of the sensor support w.r.t. the "local"	positioning
EZ: LINK SENSOR / TOCAL RETERENCE	reference	positioning
	- stability of the reference	
	- interchangeability of the sensor	
	- uncertainty of the measurement of the sensor	
E3: Link sensor/cradle	Error on the reference surface of the sensor support wrto the reference surface of the cradle	mechanica
	- connection between sensor reference plate and cradle	
E4: Link cradle/girder	Error on the mechanical references position of the girder wrto the 2	mechanica
19 A.	adjoining articulation points	
	- connection between the cradle and the girder (default at the level of the	
	articulation point) on one side	
E5a: Link girder/acc. structure	Error on the mean axis of the accelerating structure wrto the mech.	
	reference of the girder	mechanica
	- positioning of the accelerating structures on girder	
	- BPM measurement	
E5b: Inherent precision of structure	Error on accelerating structure position wrto the mean axis of the	mechanica
	accelerating structures	
	- geometry of the accelerating structure	
Some remarks:		

E1*: it includes E1 which is the error due to the link between two adjacent girders

E5a, E4, E3: are the steps of the fiducialisation

What we want to align according to the readings of the sensors is the articulation point.

E5a: mean axis : is this the mechanical reference of the first and last accelerating structures on the girders or the <u>beam reference of</u> the first and last accelerating structures?

Schematic representation of the errors

Girders and cradles – Example CTF2

Tolerance for main linac quadrupole

PRE-ALIGNMENT

Ref.	1	Inherent accuracy of reference	10 µm	1σ
Ref. to	2 Link "local" reference/sensor		5 µm	1σ
cradle	3 Link sensor/cradle		5 µm	1σ
Cradle to quad.	7a	Link cradle/quadrupole	5 µm	1σ
Quad.	<i>Quad.</i> 7b Inherent precision of quadrupole		10 µm	1σ
		TOTAL	17 μm	1σ
		Tolerance	50 µm	3σ

Tolerance for quadrupole BPM

PRE-ALIGNMENT

Ref.	1	Inherent accuracy of reference	10 µm	1σ
Ref. to 2 Link "local" reference/sensor		Link "local" reference/sensor	5 µm	1σ
cradle	3	Link sensor/cradle	5 µm	1σ
Cradle to BPM	8a Llink cradle/duadrupole BPM axis		5 µm	1σ
BPM	BPM 8b Inherent precision of quadrupole BPM axis		5 µm	1σ
	-	TOTAL	14 μm	1σ
		Tolerance	40 µm	3σ

BEAM-BASED ALIGNMENT:

8c) relative position of quadrupole and BPM reading

10 μm 1σ

Tolerance for PETS

PRE-ALIGNMENT

Ref.	1	Inherent accuracy of reference (link between two adjacent girders)	10 μm	1σ
Ref. to	Ref. to 2 Link "local" reference/sensor		20 µm	1σ
cradle	3	Link sensor/cradle	5 μm	1σ
Cradle to girder	4	Link cradle/girder	5 µm	1σ
Girder to PETS	5a 5b	Link girder/PETS Inherent precision of PETS	20 µm	1σ
		TOTAL	31 µm	1σ
		Tolerance	93 μm	3σ

Error feasibility and dedicated development

Case 1: accelerating structure

		In case of overla	apping reference =	wire, "local" referen	nce = wire	In case of	overlapping reference =wire, "local" reference = RASNIK			
	Link	Budget error (feasible)	Error origin on 200m	Error on 200m	Error on correction	Budget error (feasible)	Error origin	Error on 200m	Error on correction	
	E1*: Link "local" reference / straight reference line	TBD	Gravity	+/- 15 microns	тво	твр	Gravity	+/- 15 microns	TBD	
			Modelization	+/- 10 microns	TBD		Modelization	+/- 10 microns	TBD	
	E2: Link sensor / "local" reference						RASNIK: no	more than 20m (ot vacuum)	herweise under	
			Gravity	+/- 15 microns	TBD	TBD on 20m		No Gravity influence	се	
		on 20m	Modelization "coriolis" type	+/- 10 microns +/- 30 microns	TBD TBD	-		No modlization No "coriolis" type		
			contoiis type	-7 30 microns				No conoiis type		
	E3: Link sensor/cradle									
ation	E4: Link cradle/girder									
Fiducialisation		+/- 5 microns according to CTF2								
Fid	E5a: Link girder/acc. structure									
	E5b: Inherent precision of structure									
		+/- 10 microns								
	Some remarks:									
	E1*: it includes E1 which is the error due to t two adjacent girders									
	E5a, E4, E3: are the steps of the fiducialisation	on								
	What we want to align according to the readi sensors is the articulation point.	ngs of the								
	E5a: mean axis : is this the mechanical refere and last accelerating structures on the girder: reference of the first and last accelerating str	s or the <u>beam</u>								

H. Mainaud-Durand

Other systems - status

- Cooling system
 - Calculation of the dissipated power
 - AS: average dissipated power 530 W
 - PETS: beam losses 1500 W/m2 surface current: 1850 W/m2
 - Next step: sizing of the cooling system
- Vacuum system
 - Calculation of the surfaces to be pumped:
 - MB: 8.3 m²
 - DB: $2.3 \times 2 = 4.6 \text{ m}^2$
 - Waveguides = 0.2 m^2
 - Next step: sizing of the vacuum system
- Alignment/supporting system
 - Detailed work will start in July 2007

Tunnel integration

- Tunnel cross-section dated sept 2006
- Update of the crosssection from summer 2007
 - standard crosssection
 - special cross-sections
 with drive beam "in"
 and drive beam "out"

CLIC beam layout

Baseline configuration

Changes in the pipeline

 Shorter PETS interconnection length → additional space for drive beam quadrupoles and BPM

Future work

- Finish first round of system integration for standard module → June 2007
- Start first round of system integration for special modules → June 2007
- Initiate next level of design for standard and special modules → Summer 2007
- Main beam quadrupole design → summer 2007
- Continue study on alignment, cooling and vacuum systems
- Supporting system and tunnel integration
 summer 2007

Documentation available in EDMS structure

2007.06.08