Follow-up of CLIC Advisory Committee (ACE) (20-22/06/07)

- General comments
- The ACE Committee
- Preparation in CLIC working groups
- Review of the ACE recommendations to the CLIC/CTF3 Collaboration Board and DG
 - Action plan

CLIC parameters at 3, 1 and 0.5 TeV

Parameter	Symbol	Γ	3 TeV	1 TeV	0.5 TeV	ILC	Unit
		Γ					-
Center of mass energy	E _{cm}	Γ	3000	1000	500	500	GeV
Main Linac RF Frequency	f _{RF}	Γ	12	12	12	1.3	GHz
Luminosity	L	Γ	7	2.7	2.1	2	10 ³⁴ cm ⁻² s ⁻¹
Luminosity (in 1% of energy)	L _{99%}		2	1.5	1.4		10 ³⁴ cm ⁻² s ⁻¹
Linac repetition rate	f _{rep}	Γ	50	75	100	5	Hz
No. of particles / bunch	N _b	Γ	4.0	4.0	4.0	20	109
No. of bunches / pulse	k _b		311	311	311	2670	
No. of drive beam sectors / linac	N _{unit}	Γ	26	9	5	-	-
Overall two linac length	l _{linac}	Γ	41.7	14.4	8.0	22	km
Proposed site length	l _{tot}	Γ	48.25	20.55	14.15	31	km
DB Pulse length (total train)	τ _t	Γ	139	48	27	-	•s
Beam power / beam	Pb	Γ	15	5	5	10.8	MW
Total site AC power	P _{tot}	Γ	388	~250	158	230	MW

CTF3 status, commissioning and plans

CLIC meeting July 04, 2007

Page 5

CLIC Accelerating Structures

Structure Tests

Efficiency milestones

CLIC meeting July 04, 2007

CLIC cost (relative figures)

W:Wbrdsbi\G017 CLIC/ACAD/Lingenprofil_01.dwg

CLIC meeting July 04, 2007

Page 10

General comments

- Excellent preparation (Thanks to the working groups)
- Excellent presentations (Thanks to speakers)
- Excellent atmosphere (Thanks to ACE)
- Very constructive discussion and comments (Thanks to all)
- Excellent organisation (Thanks Sonia)
- Very useful comments of the Committee
- Strong CLIC support to Collaboration Board and to the DG
- ACE members to be enlarged (number and expertise)

Final ACE Comments

- Very impressed with CLIC effort
 - Large amount of progress over the last decade
 - Has the potential to offer a real path to multi-TeV e+/e- LC
- CTF3 will demonstrate most of the critical issues
 - Potential to create an 800 MeV test linac using CTF3 TBL
 - Clearly needed for TDR but likely possible well before
- Like to have the next meeting focused on the structure and PETS development program
 - Dates TBD but probably January

Excellent presentations

- Thanks to all participants (extra thanks to Sonia!)

Summary of Committee recommendations about structures: (Action Structure WG)

- Additional tests to benchmark P/c scaling law
 - Tests pieces of CLIC structures
- Do not mix fabrication, damping & gradient issues
 - Test of quadrant separate from gradient
 - Develop tests (separate from gradient issues) to validate choices
- Consider zero crossing detuning for additional damping
- Develop a detailed structure development & test program
 - Fabrication and testing schedule with milestones and decision points
 - Focus on separate issues (gradient, damping. Cost)
- Maximise the tests facilities
 - Take advantage as much as possible of SLAC and KEK existing facilities invite FNAL to participate

Page 13

- Strong support to 12 GHz power test stand
- Evolve from R&D towards project management

Additional note about Structures

- Review of breakdown rate (BR) specification (10⁻⁶) with short structures and low gradient (Action: Hans)
- Validation of P/C scaling with frequency
 - Graph of all scaled (BR= 10^-6) to all tested structures (X band & 30 GHz) (Action: Alexej)

X-band data @ BDR=10⁻⁶

Summary of Committee recommendations about PETS

- Develop a PETS test program (including Petsonof) similar to the one on structures (Action: Igor)
- Consider using TBL to power additional structures
 - Consider reduce to 8 PETS and add accelerating structures
 (Action?: Steffen)
- Consider fully integrated modules in CLEX
 - Beam acceleration to 800 MeV ?
 - Motivation?

(After 2010? But reserve space?: Action Steffen)

Summary of Committee recommendations about parameters (Action: Parameters WG)

- Strong support to change of parameters
 - 100 MV/m and 12 GHz
 - Coherent set of parameters
 - Concerned with long RF pulse, tight tolerances and low emittances

• Second iteration of coherent set of parameters

- Adapt optimum structure to low charge and wake field
- Aim for short(er) RF pulse length
- Suggest staged approach to 3 TeV
 - Low energy (500 GeV? 1 TeV?) with ATF emittances and NLC tolerances
 - Range of performances with more challenging parameters

Additional note about Parameters

- With present pulse length (300 ns), length of second Compressor ring (too?) long (540m) (Action: Roberto)
 - consider 2*2*4=16 instead of 2*3*3=18 multiplication factor?
 - 2 Delay loops + CR = 360m, Frf drive linac = 1.5 GHz
- Motivation for 20 mrad crossing angle (ILC = 14)?
 (Action? Daniel & Rogelio?)
- Why tight(er) tolerances in CLIC than NLC when wakefield effect similar? (Action: Daniel)
- Add NLC in comparison table at 500 GeV (Action: Frank)
- Beam dynamics optimisation (Lb/N as function of a/lambda and Frf) with lower energy and bunch charge? (Action: Daniel)

CLIC meeting July 04, 2007

Page 19

Summary of Committee recommendations about Cost (Action Hans & Carlo)

- CLIC cost mandatory for CLIC concept acceptance in 2010
- Need to show CLIC cost scaling with energy
- Develop international cost model
- Use ILC estimates wherever possible
- Limit CLIC unique aspects to when absolutely necessary

Additional note about Cost (Action: Hans & Carlo)

- CLIC cost to make coherent with parameters optimisation (electricity, etc...)
- CLIC 6kms too long at 3 TeV?
 - Different and deeper site than NLC at 1 TeV (when effective gradient 4 times larger in CLIC!)

• Compare CLIC, ILC and NLC costs for each system

- In absolute value and %
- at the same energy and variation of % with energy in CLIC

Additional note about Physics

- Cross section increasing with energy for some events
 - Constant luminosity in the multi-TeV energy range
- Need to develop a 500 GeV to 1 TeV design
 - Relaxed parameters?
 - Optimum gradient?
 - Optimum structure?

```
(Action: Parameter WG)
```

Cross Sections at CLIC

CLIC meeting July 04, 2007

Event Rates/Year	3 TeV	5 TeV
(1000 fb^{-1})	10^3 events	10^3 events
$e^+e^- ightarrow tar{t}$	20	7.3
$e^+e^- ightarrow b\overline{b}$	11	3.8
$e^+e^- \rightarrow ZZ$	27	11
$e^+e^- \to WW$	490	205
$e^+e^- \rightarrow hZ/h\nu\nu$ (120 GeV)	1.4/530	0.5/690
$e^+e^- \rightarrow H^+H^-(1 \text{ TeV})$	1.5	0.95
$e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-$ (1 TeV)	1.3	1.0

♦ Main production mechanisms in e^+e^- collisions at $s = 4 \times E_{beam}^2$:

Performances of Lepton Colliders

Summary of Committee's recommendations about other Critical Tests

Vibration suppression

 Important to demonstrate but explore if it is necessary to test as part of CTF3 – perhaps stand-alone test is sufficient

Instrumentation

- Take advantage of ATF and ILC programs
- Demonstration of structure alignment important
- Emittance transport (structure and quadrupole alignment)
 - Explore studies at CTF3 to demonstrate main beam transport and emittance preservation (could this be part of a test linac built using the TBL??)
- Beam phase stabilization

Synergy with FEL and ERL programs ??

Summary of Committee's recommendations about CDR

- A CLIC CDR by 2010 is a huge undertaking
 - Excellent group but ...
- Clearly very limited by resources
 - Resources may be better directed towards demonstrations
 - CTF3 demonstration addresses major technical issues
- Important to develop resource loaded schedule
 - Evolution from R&D group to more project orientated
- Focus on elements that are unique to CLIC concept
 - Two-Beam-Accelerator concept
 - High gradient accelerator
 - Adopt more established parameters in other areas with a staged approach to 3 TeV

CLIC Conceptual Design Report

- Development of a full CDR will be a large undertaking
 - Resources may be better directed towards demonstrations
 - CTF3 demonstration addresses major technical issues

Focus on elements that are unique to CLIC concept

- Two-Beam-Accelerator concept
- High gradient accelerator
- Adopt more established parameters in other areas with a staged approach to 3 TeV

Develop international cost model – Important for acceptance of CLIC concept

- Need to show cost scaling with energy
- Use ILC estimates wherever possible

 Participate in ILC engineering where common (civil, rf power, magnets, ...)

CLIC meeting July 04, 2007

Next meeting(s)

- Focused on structures
- Advisory Committee: 16-18(am)/01/08
 - Report to Extended CSC (and DG?) on 18/01 pm
- CTF3 technical meeting: 21-23/01/08
- CTF3 collaboration board: 23 (pm) or 24/01/08 (am)