GADGET*

Motivation

Work packages

- Wigglers
- Instrumentation Test Beam
- Intra Beam Scattering
- Vacuum Systems

Overview of requests

*Generation And Diagnostics Gear for tiny EmiTtance

Key Ingredients for Linear collider

Produce very high brightness e⁻ & e⁺ beams

Accelerate fast & efficient

Preserve brightness up to IP

Key Ingredients for Linear collider

Relative amounts of CLIC efforts (manpower in AB)

Produce very high brightness e ⁻ & e ⁺ beams	1%
Accelerate fast & efficient	94 %
Preserve brightness up to IP	5%

GADGET

Minimizing the equilibrium beam emittance in electron storage rings to values an order of magnitude below present state of the art is a key requirement for linear collider damping rings as well as for next generation storage ring based synchrotron radiation facilities. The goal of GADGET is the development of key technologies and theoretical tools essential for achieving this objective. This includes:

- Development and test of superconducting wigglers with high on axis field, short period length and heat isolation against SR power.
- Development of instrumentation to measure, control and tune low emittance beams. This includes an instrumentation test beamline (ITB) at the CTF3 probe beam linac
- Improve Intra beam scattering (IBS) theory for IBS dominated beams and perform measurements on existing synchrotron radiation facilities to verify theoretical predictions
- Development of low jitter, low ripple kickers with solid state pulsers
 for damping ring extraction
- **NEW** Development, characterization and beam test of coating techniques for critical vacuum chamber components.

Key component to get high brightness are dampings ring

Damping rings and 3rd generation SR facility parameters table from Yannis Papaphilippou

PARAMETER	PARAMETER NLC ILC CLIC		CLIC	ATF	ALS	SLS
energy [GeV]	1.98	5.00	2.424	1.3	1.9	2.4
Bunch charge [10 ⁹]	7.5	<20	4.4	10	4	6
circumference [m]	299.79	6695.1	365.2	139	197	288
hor. normalized emittance [nm]	2370	5600	395	2798	25656	23483
ver. normalized emittance [nm]	20	20	4.2	25	19	20
$N_B^{}/\epsilon_X^{}\epsilon_Y^{}$ [10 ⁵ nm ²]	1.58	1.78/	26.5	1.42	0.082	0.128

These are challenges for lattice design and beam dynamics theory

- Emittance IBS dominated
- Very strong damping with 2.5 T s.c. wiggler $\tau_x / \tau_y / \tau_z = 1.5 / 1.5 / 0.75$ ms
- Issues: Wiggler technology, IBS, e-cloud, orbit & optics control, dynamic aperture...

Only superconducting wiggler magnets with unprecedented parameters can provide sufficient damping strength.

Two institutes, BINP and ANKA have made paper studies for such wigglers, Documented in conference papers at EPAC'06 and PAC'07

Both, BINP and ANKA have an impressive record of achievements with this type of magnet technology

In GADGET we want to design & produce two full size (2m) prototypes of each wiggler type including magnet measurements and tests with beam in ANKA 2.5 GeV SR source.

Goals are

- Demonstrate feasibility of wiggler concepts
- Understand limitations and permissible parameter space for wigglers (therefore two types !)
- Get realistic wiggler description for beam dynamics

	BINP	ANKA
B _{peak}	2.5 T	2.7 T
λ_{W}	50 mm	21 mm
Beam aperture full height	12 mm	5 mm
Conductor type	NbTi	NbSn ₃
Operating temperature	4.2 K	4.2 K

Contour plot of horizontal emittance with IBS as function of wiggler parameters

Low vertical beta-optics in the long straight sections of ANKA: $\beta_x = 14 \text{ m}, \beta_y = 1.9 \text{ m}, \epsilon_x = 40 \text{ nm}$

Instrumentation Test Beam Line, ITB

Dedicated beam line for beam diagnostics R&D using CALIFES beam

Features: low ϵ beam, possibility to achieve very short bunch length, variable time structure, space, accessibility

42.5 m

Beamline design and construction

JAI and CERN

JAI

Diagnostics R&D in ITB requested in GADGET

Coherent diffraction radiation methods

BPM's for integration in DR-wiggler cryostat

- Quantitative halo monitors
- Gas jet for "calibration halo"
- Single shot emittance measurements

TU Berlin Univ. Heidelberg and Karlsruhe Univ. Heidelberg and Karlsruhe CERN

IBS workpackage

CLIC DR's emittance will be dominated by Intrabeam scattering Predictive power of existing theory for this regime is questionable

- New approaches to compute phase space distribution
- Methods to predict halo generation due to IBS
- IBS and beam polarisation
- Ad initio design of magnet lattice for minimum IBS+SR emittance
- Experimental verification of theory with experiments in existing storage rings

ATF Results

Single bunch Transverse Emittance

X emittance determined by Ring Design. Measured data points are fit to simulation.

Y emittance =6.5pm at GLC intensity, is below GLC design. 2

Vacuum systems

Major worries for DR's are instabilities due to lons and e-cloud. Reduction of residual gas pressure and reduction of secondary emission with appropriate coatings (NEG, TiN,...) may cure these efffects. This requires a good understanding of a wide range of coating properties and fabrication techniques. There are potential spin-offs with other CLIC and ILC vacuum systems, but also with LHC injector chain.

• LNF

Test of vacuum chamber coatings with beam in DA Φ NE ring

Cockcroft Institute

Behavior of NEG coatings under conditions close to those expected in damping rings. Measurement of photo-electron yield, photon-stimulated desorption rates, conditioning rates,

Some data are already available, but need for a set of systematic and rigorous measurements to be able to design a vacuum system with confidence.

• CERN

Correlate SEY with surface composition and conditioning Develop new production technique for NEG coated vacuum pipes of small diameter (few mm) Improve capability to simulate vacuum properties in long chambers pumped by NEG films

Guidelines from ESGARD (as communicated by Erk Jensen)

All ESGARD steered accelerator R&D grouped in three integrated actvities. GADGET in "Novel Acceleration Systems", (coordinator Erk Jensen, CERN)

Target for GADGET total cost

3.0 M€ + 1.5 M€ (optional) = 4.5 M€

Target for GADGET request to EU

1.0 M€ + 0.5 M€ (optional) = **1.5 M**€

Target for ratio EU request/Total cost

0.5

GADGET budget overview

Workpackage	Interest	Institute			Material		Manpower with overhead			Total /	EU /	
				Lab	EU	Sum	Lab	EU	Sum	Total	workpackage	workpackage
		ANKA	SC-Wiggler ANKA	0	450	450	500	100	600	1050		
Wiggler	CLIC	CERN	SC-Wiggler ANKA, CERN contribution	100	0	100	0	0	0	100	2150	850
Wiggiei			SC-Wiggler BINP	100	300	400	500	0	500	900	2100	000
	L]		SC-Wiggler BINP, CERN contribution	100	0	100	0	0	0	100		
		CERN	ITB CERN	230		230	120		120	350		
	i – J	JAI	ITB John Adams	33	75	108	860	200	1060	1168	i	681
	i – J	LAPP	BPM Electronics	50		100	120	0	120	220		
Instrumentation	i – J		CDR experiment	29	105	134	314	0	314	448	0 2921 0 0	
Test Beams	CLIC & ILC	Uni. Heidelberg	Halo diagnostic developments	60	60	120	180	0	180	300		
	1 1	Uni. Karlsruhe	ITB Halo Studies Univ. Karlsruhe	0	0	0	0	0	0	0		
	i – J	CERN	single shot emittance measurement	0	30	30	90		90	120		
	i	TU Berlin	Wiggler BPM	46	21	67	30	140	170	237		
	J	CERN	Wiggler BPM	18	0	18	60	0	60	78		
		PSI	IBS experiments at SLS/PSI	0	0	0	0	0	0	0		
IBS	CLIC & ILC	ANKA	IBS/wiggler experiment in ANKA	100	0	100	100	0	100	200	394	44
	L]	Cockcroft	IBS theory	0	0	0	150	44	194	194		
Vacuum	ILC & CLIC	LNF	Ecloud with NEG chamber coating studies in DAΦNE	0	0	0	180	180	360	360		540
	& LHC injectors	Cockcroft	Surface characteristion of NEG coating	100	50	150	280	140	420	570	1150	
			Small NEG coated chambers, SEY, vac. simulation	50	50	100	0	120	120	220		
		,	Grand Totals	1016	1191	2207	3484	924	4408	6615	6615	2115
		,	ESGARD Goals	<u> </u>							4500	1500

Ratio EU / Lab. commitment	1.17	0.27	0.47
ESGARD Goals			0.50