
New Features and Performances of the

Simulation Code PLACET

Andrea Latina, D.Schulte, P.Eliasson

H.Burkhardt, E.Adli, G.Rumolo, R.Tomas, ...

CLIC Meeting - November 9, 2007

- Introduction and History

- New Features

- Examples and Results

The Tracking Code PLACET

- it is a tracking code that simulates beam transport and orbit correction in linear colliders,
developed by Daniel Schulte

- in what does it differ from MAD

• MAD

- is more mature, 15 years long history

- it was originally designed for accelerator design

- it can do tracking but with some limitations

- it implements closed-orbit correction schemes

- it is the standard, many tools were built on top of it (PTC, BIMAD, DMAD, ...)

• Placet

- has limited accelerator design capabilities

- it is a real tracking code and implements several collective effects -relevant for LC-

- it implements orbit correction algorithms and feedback loops

- it is not symplectic, it is focused on linear colliders

- it cannot simulate rings

- it can virtually simulate the complete CLIC machine (Main Beam and Drive Beam)1

- it is fully programmable (its interface is a real programming language)

- it is open to other codes, modular and expandable

1except the Damping Rings

Introduction

Survey on the Placet’s Features

• placet simulates the beam transport and orbit correction in linear colliders

- it implements the following element types:

Quadrupole, SBend, Multipole, AccCavity, DecCavity, Kicker,

Beam Position Monitor, Collimator, Crab Cavity

- it implements Girder

- it consider the misalignments of the elements : offsets, rolls, and pitches

- it can track in 4d or 6d

• it takes into account

- long/short-range wakefields
- in the accelerating structures
- in the crab cavities

- geometric and resistive wall wakes in the collimators

- it implements synchrotron radiation emission:

- Incoherent SR emission : all magnets

- Coherent SR emission : sector bends

• it can simulate ground motion : sample sites, ATL

Introduction

Survey on the Placet’s Features

• it implements two beam models

Single ParticlesMacro Particles + 2nd order momenta

- sliced beams: longitudinal slices with macro-particles and second order moments (faster,
LINAC)

- single particles: macro-particles (BC, BDS)

it can switch between these models during the tracking

BC Main Linac BDS

Particles Slices Particles

⇒ PLACET can simulate: bunch compressor, main linac, drive beam, beam delivery system (including crab cavities
and instrumentation), interaction point (using guinea-pig) and soon : post collision line

Introduction

Survey on the Placet’s Alignment Tools

• Available alignment techniques:

- One-to-one Correction

- Dispersion Free Steering

- Ballistic Correction

- RF Alignment

- Tuning Bumps

- Dispersion Bumps

- Wakefield Bumps

• Alignment procedures are present in the code in form of “Test...” routines that calculate
the average of several machines and take the following arguments:

-beam : beam that has to be used during the optimization

-machines : number of machines to be simulated

-correctors : list of correctors to be used (they can be either quadrupoles or dipoles)

-survey : misalignment schema “Clic”, “Zero”, “None”, or an external user defined Tcl procedure (this
allows the simulation of ground motion, for example)

• Example:

TestRfAlignment

-beam beam0 -machines 100 -survey load lattice -emitt file emitt.rf

Introduction

Example of a Minimalistic PLACET Script

source /home/andrea/clic/scripts/clic_beam.tcl

set e_initial 9.0

BeamlineNew

source /home/andrea/clic/scripts/clic_linac.tcl

BeamlineSet -name linac

array set match {beta_x 6.6868 beta_y 2.7269 alpha_x -1.7211 alpha_y 0.7851}

set match(emitt_x) 6.8

set match(emitt_y) 0.1

set match(e_spread) 2.0

set match(charge) 2.56e9

set charge $match(charge)

set match(sigma_z) 30.8

set n_slice 31

set n 9

make_beam_slice beam0 $n_slice $n

SurveyErrorSet -quadrupole_y 50.0 \

-cavity_y 10.0 \

-cavity_yp 10.0 \

-bpm_y 10.0

TestSimpleCorrection -beam beam0 -emitt_file simple.dat -survey Clic -bpm_res 0.1 -machines 1

Introduction

Brief History of Placet (I)

• 1999→2005:

- originally developed by Daniel Schulte (just for fun!)

- it was improved with contributions by Eric D’Amico, Nicolas Leros and

- later by Peder Eliasson, who introduced the tuning bumps for ML alignment

⇒ until 2005, it was practically used only

- at CERN for CLIC simulations (ML+BDS, Drive Beam) and

- at RHUL, by Glenn White, for NLC Feedback Simulations (together with Merlin, that was
used for the BDS)

Introduction

Brief History of Placet (II)

• 2005→today:

- I took over the code and made some improvements :
C++ redesign (I needed to..)

enhancement of the data structures (attributes)

longitudinal tracking

particles to slices

new elements : crab cavities, ...

Octave interface

new correction schemes (“generic” correctors, new algorithms)

MPI Parallel module (exp)

matching procedure, ...

new installation procedure, web page...

- Daniel : ground motion, dynamic effects, ...

- Helmut and Lionel : HTGEN, halo and tail generation

- Giovanni : Collimator’s wakefields

- Erik : Coherent Synchrotron Radiation Emission in Sector Bends, Drive Beam Improve-
ments

⇒ at the same time, placet’s popularity has grown :

new collaborations started and. . .

Introduction

Collaborations Across Europe

- LAL/Orsay (FR)

- ILC Beam-Beam Fast Feedback Simulation (PAC07)

- ATF2 Simulations

- AML/UPL Interface

- Cockcroft Institute (UK)

- ILC / CLIC Crab Cavities (PAC07, EPAC2008??)

- Ankara University (Turkey)

- Gamma-Gamma interaction at the ILC

- John Adams Institute, Oxford (UK)

- ILC / ATF2 Feedback Systems (EPAC2008??)

- Royal Holloway University of London (UK)

- ILC Collimators, BDSIM integration (PAC07, EPAC2008??)

- Daresbury Lab (UK)

- ILC Collimators (PAC07)

- PSI (CH)

- CLIC Bunch Compressors (PAC07)

placet placet-octave (improvements..)

Core C C++

User Interface Tcl/Tk Tcl/Tk + Octave

Tracking 4d 6d
Slices ⇒ Particles (LINAC-BDS) Slices ⇔ Particles (BC-LINAC-BDS)

Element Types Quad/Dipole/Bend/Multipole, Acc/DecCavity CrabCavity, Collimator,
Acc/DecCavity DL Element, LinkElement
BPM, TclCall

Collective Effects Short/Long-range WF in Cavities Geometric/Resistive-Wall WF in Collimators
Inc. Synrad in Bend, Quad, Multipoles Longrange Wakefields in the CrabCavities

Coherent Synrad in the SBend

I/O File Format PLACET / MAD (tricky) Universal Parser Library / AML (exp)

Alignment Routines Dipole Kicker / Quadrupole Movers Generic Correctors (Attributes)
1-TO-1, Ballistic, RF, DFS, . . . Octave-1-TO-1, Octave-DFS, Simplex,

MICADO, ...

New Features

Element’s Attributes

• Defined a hierarchy of C++ classes to describe the element types. Each type derives from
object ELEMENT

• List of common attributes to all element types

-name Element name [STRING]

-s Longitudinal position [m] [READ-ONLY]

-x Horizontal offset [um]

-y Vertical offset [um]

-xp Horizontal offset in angle [urad]

-yp Vertical offset in angle [urad]

-roll Roll angle [urad]

-length Element length [m]

-synrad Incoherent Synchrotron Radiation emission [BOOL]

-thin_lens Thin Lens approximation [INT!=0]

-six_dim Enalbe 6d tracking [BOOL]

-aperture_x Horizontal aperture [m]

-aperture_y Vertical aperture [m]

-aperture_shape Aperture shape [STRING]

• Each sub-class inherits these attributes and defines its own attributes

An example :

CrabCavity -name CRABCAV -length 0.5 -frequency 3.9 -voltage 1.32 -wakelong "wakelong"

New Features

Element’s Attributes

• One can read/modify each attribute, using two commands

- placet:
ElementSetAttribute -element 123 -attribute "length" -value 321.0

set length [ElementGetAttribute -element 123 -attribute "length"]

- placet-octave:
QUAD=placet get number list("main linac", "quadrupole");

placet element set attribute("main linac", QUAD, "strength", 0.0);

QUADS=placet element get attribute("main linac", QUAD, "strength");

• Previously, there was one command for each property:

MultipoleSetStrengthList

DipoleSetStrengthList

QuadrupoleGetStrength

DipoleSetStrength

⇒ This allows for advanced optimization/feedback simulation programs

⇒ A new attribute that turned out to be very useful is -name

New Features

Embedding of Octave in PLACET

• Octave is a high-level interactive language for numerical computations

- it is mostly compatible with MatLab c©

- it can do arithmetic for real and complex scalars and matrices, solve sets of nonlinear
algebraic equations, integrate functions overs finite and infinite intervals, and integrate
systems of ordinary differential and differential-algebraic equations

• Octave’s interpreter and libraries have been embedded into PLACET

- this means that now PLACET includes two interpreters: Tcl and Octave languages

• The backbone of PLACET is still the Tcl Language but a new Tcl keyword Octave has been
added

• This keyword can be used in two ways:

- Octave

⇒ without arguments, it opens an interactive Octave shell

- Octave { here some octave code }
⇒ it runs the Octave’s code and continue the Tcl script execution afterwords

placet-octave’s instructions set

- placet get name number list(beamline, name)

- placet get number list(beamline, type)

- placet get bpm readings(beamline)

- placet get response matrix(beamline, beam, correctors, bpms)

- placet test no correction(beamline, beam, survey)

- placet test simple correction(beamline, beam, survey)

- placet vary corrector(beamline, beam, corrector, variation)

- placet element get attributes(beamline, element)

- placet element get attribute(beamline, element, attribute)

- placet element set attribute(beamline, element, attribute, value)

- Tcl Eval(expression)

- Tcl GetVar(name)

- Tcl SetVar(name, value)

Example of 1-to-1 Correction Using placet-octave

#!/home/andrea/bin/placet

source beamline.tcl

source beamdef.tcl

BeamlineSet -name "beamline"

SurveyErrorSet -quadrupole_y 300.0 \

-quadrupole_roll 300.0 \

-cavity_y 300.0 \

-cavity_yp 300.0 \

-bpm_y 300.0

Octave {

B = placet_get_number_list("beamline", "bpm");

C = placet_get_number_list("beamline", "quadrupole");

R = placet_get_response_matrix("beamline", "beam0", B, C);

placet_test_no_correction("beamline", "beam0", "Clic");

b = placet_get_bpm_readings("beamline", B);

c = -pinv(R) * b;

placet_vary_corrector("beamline", C, c);

placet_test_no_correction("beamline", "beam0", "None");

[b,S] = placet_get_bpm_readings("beamline", B);

plot(S, b);

}

New Features

Improvements in the Tracking Module

• Longitudinal motion is now considered

- longitudinal track is a boolean flag of each element

⇒ entire segments of the lattice can be considered as 6d (i.e. the BC but not the ML)

- DRIFT, QUADRUPOLE, DIPOLE, SBEND, CAVITY, SEXTUPOLE and MULTIPOLE’s
are already implemented

• Thin-lens approximation is being implemented as a boolean flag (both 4d and 6d)

• simple MPI parallel tracking module exists (never distributed!)

- beam is scattered among the CPUs (# of particles / # of CPUs)

- beam reduction after tracking correctly updates the beamline status (i.e. bpm readings)

- collective effects are not considered yet

Longitudinal Tracking

Example: CLIC BC2 Simulation

⇒ Beam parameters:

entrance of entrance of
unit Bunch Compressor 2 Main Linac

energy [GeV] 9 9
unc. energy spread % 2.0 2.0
no.of particles [#] 2.56 · 109 2.56 · 109

charge [nC] 0.41 0.41
sigmaz [µm] 250 30
h. norm. emittance [nm·rad] 570 680
v. norm. emittance [nm·rad] 4 5

⇒ BC2 Parameters:

- Magnetic chicane:

R56 = -14 mm
norm. s− E corr. = -70.5 1/m

- RF system:

V = 1009.14 MV integrated voltage
Φ = kπ phase
f = 30 GHz frequency

Longitudinal Tracking

Example: CLIC BC2 Simulation 1/3

Longitudinal Tracking

Example: CLIC BC2 Simulation 2/3

Longitudinal Tracking

Example: CLIC BC2 Simulation 3/3

Longitudinal Tracking

Example: Longitudinal Phase Space in the CTF3 Linac
(H.Shaker)

• Wakefields of the accelerating cavities are taken into account

 0.018

 0.0181

 0.0182

 0.0183

 0.0184

 0.0185

 0.0186

 0.0187

 0.0188

 0.0189

 0.019

-3000 -2000 -1000 0 1000 2000 3000 4000 5000

E
 [G

eV
]

z [µm]

INPUT

 0.094

 0.0945

 0.095

 0.0955

 0.096

 0.0965

 0.097

 0.0975

 0.098

 0.0985

-3000 -2000 -1000 0 1000 2000 3000 4000 5000

E
 [G

eV
]

z [µm]

OUTPUT

Bunch to bunch longrange wakefields are taken into account.

⇒ PLACET has already been tested against real measured data from CTF3:

1) PLACET Response Matrix used to predict BPM readings

2) Measured Response Matrix using PLACET to calculate the correction

CrabCavities

Example: ILC Crab Cavity Wakefields (G.Burt, A.Dexter -
Cockcroft)

Vertical offset at the IP due to longrange wakefields in the Crab Cavities in case of frequency

jitter.

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0 20 40 60 80 100 120 140 160 180 200

y
po

si
tio

n
at

 IP
 [m

m
]

Bunch #

∆f/f=0.000045

Collimator Wakefields

Example: CLIC BDS Collimator Wakefields (G.Rumolo)

- Luminosity reduction curves due to vertical misalignment of the collimators

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-15 -10 -5 0 5 10 15

L/
L 0

y offset [µm]

Luminosity reduction curve for vertical misalignment of collimator 2

bunch charge = 5.8e9 * 1.0
* 0.7
* 0.5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-15 -10 -5 0 5 10 15

L/
L 0

y offset [µm]

Luminosity reduction curve for vertical misalignment of collimator 4

bunch charge = 5.8e9 * 1.0
* 0.7
* 0.5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-15 -10 -5 0 5 10 15

L/
L 0

y offset [µm]

Luminosity reduction curve for vertical misalignment of collimator 6

bunch charge = 5.8e9 * 1.0
* 0.7
* 0.5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-15 -10 -5 0 5 10 15

L/
L 0

y offset [µm]

Luminosity reduction curve for vertical misalignment of collimator 8

bunch charge = 5.8e9 * 1.0
* 0.7
* 0.5

Static Alignment

DFS in the BDS Collimation System (R.Tomas)

- using one test beam with E = 98%E0

- alignment in 4 steps...

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

ε y
 [n

m
]

quadrupole index

test beam 98% nominal energy, ω1/ω0=1e5, σbpm=0.1 µm, misalignment 10 µm

1-to-1 correction, no multipoles
DFS correction, no multipoles

1-to-1 correction, multipoles
DFS correction, multipoles

nominal

⇒ final emittance growth is ∆ε = 0.7 nm

New Optimization Routines

Diagnostics in the CLIC BDS (R.Tomas)

We want to remove the couplings due to quadrupole rolls, using skew quadrupoles.

We minimize the following merit function:

M =
5∑

i=1

(σy,i − σ0 y,i)
2

σ2
0 y,i

New Optimization Routines

Skew Quadrupoles Optimization

• Beam size at the laserwire as a function of the Quadrupoles roll

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1 10 100 1000 10000

σ y
 [µ

m
]

σroll [µrad]

beam size at laser wire 1

before correction
after correction

A CSR module has been implemented (E. Adli).

CSR can be activated in the Sbend element, with a
simple switch. Implementation is based on the proven
Elegant-implementation, based on paper by Saldin et
al.

User can (and should) adjust number of
bins and filter length for best performance.

Easy to use: described by on-line help:

Currently undergoing final
benchmarking against Elegant and
CSRTrack (E. Adli and F. Stulle)

(Limitations of this approach: 1D model, currently no
shielding effects taken into account).

CSR Module (E.Adli)

HTGEN

Halo generation and tracking (H. Burkhardt)

• The beam gas pressure and apertures can be separately specified for each element

• The particles hitting the beam-pipe are considered lost

⇒ beam-gas scattering form LINAC and BDS: a fraction of 10−4 of the particles impacts on the spoilers

Overview of the new features

• PLACET has undergone a redesign toward pure C++ code

- it is faster

- easy to maintain and extend

• Collimator wake fields (both geometric and resistive wall) have been implemented to allow
full tracking

- luminosity reduction curves due to the wake fields have been obtained for initial jitters and
different configurations of collimator misalignments

- the performances of the nonlinear collimation system including wake fields have to be
studied

• The model for wake fields includes nonlinear and near-wall effects

• Octave interface opened the way to even more complex simulation scripts and much more,
thanks to its high-level language for scientific computations

- Correction algorithms and optimizations are easy to write

- Feedback loops can take advantage of the extensive Octave’s library of optimization rou-
tines

- Excellent Results in BDS Alignment

Overview of some other new features

• Longitudinal motion is a boolean flag : only segments of lattice can be 6d (like option -synrad)

• ParticlesToSlices, besides the existing SlicesToParticles

• CrabCavities in the code, with independent longrange wakefields

• Possibility of creating external, dynamically loadable, elements

• Interfacing with BDSIM, for accurate HALO tracking in the Collimators (RHUL):

- parallel tracking: placet/BDSIM, with exchange of halo data at each Collimator

- placet tracks the core bunch along the BDS, and the HALO inside the collimators

- BDSIM tracks the halo along the BDS, and receives from placet the Collimators wake-
field kick

• Future Developments

⇒ Complete the Static Alignment of the Final Focus (I and Rogelio are obtaining very good
results!)

⇒ Test of Dispersion Free Steering in CTF3

⇒ Can placet-octave be used in the control room?

http://savannah.cern.ch/projects/placet

Appendix

New PLACET Installation Procedure

• Now we have a ./configure script:

- it checks the characteristics of the computer in use and writes the appropriate makefiles

- it accepts the following options:

./configure

-prefix=DIR installs placet in $DIR

-enable-htgen enables the use of HTGEN
-enable-octave enables the use of Octave
-with-gsldir=DIR GNU Scientific Library is installed in $DIR

-with-octdir=DIR Octave is installed in $DIR

-with-htgendir=DIR HTGEN is installed in $DIR

• Installation procedure

$.> ./configure --enable-octave --with-gsldir=$HOME/gsl-1.8 --prefix=$HOME

$.> make

$.> make install

Installation procedure on AFS

• There is a special version of ./configure for computers with /afs, that automatically sets all
these paths to the proper directories on AFS. On a CERN computer, you can install placet
with

$.> ./configure.AFS --prefix=$HOME

$.> make

$.> make install

⇒ “stable” makefile creates :

${prefix}/bin/placet

${prefix}/bin/placet-htgen

⇒ “development” makefile creates :

${prefix}/bin/placet-development

${prefix}/bin/placet-htgen

${prefix}/bin/placet-octave

• and also : ground, grid, mad2gp, gp2mad, ... and other utilities

Interfacing of PLACET with GdfidL

• Original idea was to create a “wakefields file format” to exchange wakefields data between
different tracking codes

• The wakefields would be generated by GdfidL or similar programs

• First problem : data compression, the amount of data produced by GdfidL can be as big as
several hundreds Mb’s per each collimator

- we need to make a multipole expansion of the Wake-Potentials

- we need to calculate the wakefield kick from the expansion

After several discussions with Warner, we agreed about a file format for the (uncompressed)
wake-potentials (GdfidL → multipole expansion)

- GdfidL writes on disk a set of “slices” containing the Longitudinal Wake-Potential on a grid

• I have created a set of utilities to perform the multipole expansion and to calculate

the transverse components of the Wake-Potential

• Multipole Expansion:

$.> mpolexp2d --help

mpolex2d - 3D Multipole Expansion of a (Wake)Potential, version 0.1

Written by Andrea Latina <andrea.latina@cern.ch>, Apr 26 2007

USAGE: mpolexp2d [OPTIONS] K [FILE]...

DESCRIPTION:

This program calculates the multipole moments of an input function,

up to the ‘K’-th term.

OPTIONS:

--help Display this help

--version Display version information

--rx Horizontal radius of the integration disk (’XX’ or ’XX%’)

--ry Vertical radius of the integration disk (’YY’ or ’YY%’)

--nr=N Number of radial points for the integration (default 50)

--bilinear|bicubic Use [bilinear|bicubic] interpolation (default bilinear)

--gdfidl|octave Assume the input is in [Octave|GdfidL]’s text format

(default GdfidL)

With no FILE, or when FILE is -, read standard input.

$.>

-0.002 -0.001 0 0.001 0.002 0.003 0.004-0.002
-0.0015

-0.001
-0.0005

 0
 0.0005

 0.001
 0.0015

 0.002

-30
-25
-20
-15
-10

-5
 0

’< ./gdfidl2datafile < warner.dat | ./datafile2gnuplot.m ’
’< ./mpolexp2d 5 < warner.dat | ./apply2d.m ’

x

y

-0.002-0.001 0 0.001 0.002 0.003 0.004 -0.002-0.0015-0.001-0.0005 0 0.0005 0.001 0.0015 0.002

-30
-25
-20
-15
-10

-5
 0

’< ./mpolexp2d 5 < warner.dat | ./apply2d.m ’
’< ./gdfidl2datafile < warner.dat | ./datafile2gnuplot.m ’

x y

• Calculation of the transverse components of the Wake-Potential

$> ./mpolexp2Wpotential

mpolexp2Wpotential - Reads the Multipole Expansion of a Wake-Potential

and returns its components at any point, version 0.1

Written by Andrea Latina <andrea.latina@cern.ch>, Apr 26 2007

USAGE: mpolexp2Wpotential wakepotential.dat < input.dat

Where ‘input.dat’ is a set of X Y Z triplets

$.>

• In which I calculate the transverse components, applying the Panofsky-Wenzel theorem

• TO DO LIST

- deal with the charge distribution

- include this code into placet

