Bunch compression in CTF3

21 March 2000 CTF3 WG meeting

Final bunch length requirements

$$P_{PETS} \propto F^2 q_B^2$$
 where $F = \int e^{-2ip \, n \, t} \Gamma(t) \, dt \implies F = e^{-\frac{(2p \, s \, n)^2}{2}}$ for gaussian bunches

In order to efficiently produce 30 GHz power in the PETS, the bunch must be short.

In CLIC the nominal bunch length is $\sigma \sim 0.4$ mm rms

In CTF3, to stay above 80% \Rightarrow $\sigma \sim 0.6$ mm rms

Requirements on bunch phase

The distance between bunches after combination is 2 cm (15 GHz). Any variation in bunch-to-bunch distance corresponds to a loss of efficiency.

Below - reduction in 30 GHz power generation efficiency, for a linear phase slip of the center of the injected bunches.

For instance, in order to stay above 80% \Rightarrow $\Delta s < 0.3 \text{ mm}$

 $\sigma \sim 0.6 \text{ mm rms}$

Bunch phase space at the end of the drive beam accelerator

The particle distribution in the longitudinal phase space is determined by the longitudinal wake-field and by the RF curvature

Phase space distortion

The CSR wake causes an average energy loss and a distortion in phase space

$$\sigma_z = 1.5 \text{ mm}$$

$$Qb = 2.33 \text{ nC}$$

Longitudinal phase space, at the exit of the accelerator, and after 9/2 turns in the ring

- The RF phase in the linac (5°) has been chosen to maximize correlation (filling the ring momentum acceptance, and accepting a 5% beam loss localized in the tail of the gaussian distribution)
- Shielding included, momentum compaction of the ring not included

Dependence of power generation efficiency from initial bunch length

21 March 2000 CTF3 WG meeting

Dependence of power generation efficiency from initial (uncorrelated) energy spread

21 March 2000 CTF3 WG meeting